Pointwise and Semigroup Methods in Viscous Conservation Laws and Completely Integrable Systems
粘性守恒定律和完全可积系统中的点法和半群法
基本信息
- 批准号:0101529
- 负责人:
- 金额:$ 9.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-09-01 至 2001-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Viscous conservation laws arise in a wide variety of physical applications, including fluid dynamics, magnetohydrodynamics,and materials science. Of particular importance are solutionsof such equations that are stable and hence typically correspond with observable phenomena. Unfortunately, establishingthe stability of these solutions has proven to be a quitedifficult problem. The pointwise Green's function approach,however, initiated by Liu and developed by Liu and his collaborators, has proven quite robust: in applications to viscous shock waves arising in single conservation laws ofarbitrary order, viscous shock waves arising in systems with second order diffusion, planar viscous shock waves, degenerate viscous shock waves, and rarefaction waves. We propose to continue and extend this promising line ofresearch in three directions. First, new techniques recently developed by Howard and Zumbrun appear suitablefor extension to (i) systems of viscous conservation laws admitting degenerate viscous shock waves, and (ii)systems of viscous conservation laws with high orderviscosity. Second, we propose to develop further techniques that will extend the pointwise Green's function approach to the case of viscous rarefaction waves. Finally, we would like to incorporate new techniquesrecently developed in the context of perturbation theoryfor completely integrable systems into the study of the necessarily oscillatory dynamics that arise in viscous conservation laws of order higher than two.The conservation of such fundamental properties as energy andmomentum often leads to partial differential equationsthat model some underlying physical process. For example,the Navier-Stokes equations of fluid dynamics and the Maxwell equations of electromagnetism follow this paradigm. Of primary concern are stable phenomena: thosewhose principal structure is robust to minor environmentalfluctuations. We propose to continue and extend a promising line of research that has been extraordinarily successful in establishing a clear criterion for suchstability. A direct consequence of the approach is a detailed understanding of certain fundamental partialdifferential equations.
粘性守恒定律出现在各种各样的物理应用中,包括流体动力学,磁流体力学和材料科学。 特别重要的是这些方程的解是稳定的,因此通常与可观察到的现象相对应。 不幸的是,建立这些解决方案的稳定性已被证明是一个相当困难的问题。 然而,由Liu和他的合作者提出并发展的逐点绿色函数方法已被证明是相当稳健的:在任意阶单守恒律中产生的粘性激波、二阶扩散系统中产生的粘性激波、平面粘性激波、退化粘性激波和稀疏波的应用中。 我们建议在三个方向上继续和扩展这一有前途的研究路线。 首先,霍华德和Zumbrun最近发展的新技术似乎适合推广到(i)允许退化粘性激波的粘性守恒律系统和(ii)具有高阶粘性的粘性守恒律系统。 其次,我们建议开发进一步的技术,将逐点绿色的函数方法的情况下,粘性稀疏波。 最后,我们想把最近在完全可积系统的微扰理论的背景下发展起来的新技术,应用到研究在高于二阶的粘性守恒律中出现的必然振荡动力学中。能量和动量等基本性质的守恒常常导致偏微分方程,这些偏微分方程模拟了一些基本的物理过程。 例如,流体动力学的纳维-斯托克斯方程和电磁学的麦克斯韦方程都遵循这种范式。 主要关注的是稳定的现象:其主要结构对微小的环境波动具有鲁棒性。 我们建议继续并扩大一个有前途的研究,已经非常成功地建立了一个明确的标准,这种稳定性。 这种方法的一个直接后果是对某些基本偏微分方程的详细理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Goodman其他文献
International chemical identifier for chemical reactions
- DOI:
10.1186/1758-2946-5-s1-o16 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:5.700
- 作者:
Guenter Grethe;Jonathan Goodman;Chad Allen - 通讯作者:
Chad Allen
Newton's method for constrained optimization
- DOI:
10.1007/bf01582243 - 发表时间:
1985-11-01 - 期刊:
- 影响因子:2.500
- 作者:
Jonathan Goodman - 通讯作者:
Jonathan Goodman
Teaching residents may affect the margin status of breast-conserving operations
住院医师教学可能影响保乳手术的边缘状态
- DOI:
10.1007/s00595-015-1184-5 - 发表时间:
2016 - 期刊:
- 影响因子:2.5
- 作者:
Gina R. Shirah;Chiu;M. Heberer;L. Wikholm;Jonathan Goodman;Marcia E. Bouton;I. Komenaka - 通讯作者:
I. Komenaka
On the stability of the unsmoothed Fourier method for hyperbolic equations
- DOI:
10.1007/s002110050019 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Jonathan Goodman;Thomas Hou;Eitan Tadmor - 通讯作者:
Eitan Tadmor
Can you train the pelvic floor muscles by contracting other related muscles?
可以通过收缩其他相关肌肉来训练骨盆底肌肉吗?
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2
- 作者:
J. Kruger;D. Budgett;Jonathan Goodman;K. Bø - 通讯作者:
K. Bø
Jonathan Goodman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Goodman', 18)}}的其他基金
Mathematical Sciences: Nonlinear Waves
数学科学:非线性波
- 批准号:
9404528 - 财政年份:1994
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
New Numerical Methods for Quantum Field Theory and Critical Phenomena
量子场论和临界现象的新数值方法
- 批准号:
9200719 - 财政年份:1992
- 资助金额:
$ 9.3万 - 项目类别:
Continuing Grant
New Numerical Methods for Quantum Field Theory and Critical Phenomena
量子场论和临界现象的新数值方法
- 批准号:
8911273 - 财政年份:1990
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
New Numerical Methods for Quantum Field Theory etc.
量子场论的新数值方法等
- 批准号:
8705599 - 财政年份:1987
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
8553215 - 财政年份:1986
- 资助金额:
$ 9.3万 - 项目类别:
Standard Grant
相似海外基金
Weighted semigroup approach for Fokker-Planck-Kolmogorov equations
Fokker-Planck-Kolmogorov 方程的加权半群方法
- 批准号:
517982119 - 财政年份:2023
- 资助金额:
$ 9.3万 - 项目类别:
WBP Fellowship
Application of automata and transducers to computational semigroup theory
自动机和传感器在计算半群论中的应用
- 批准号:
2590267 - 财政年份:2021
- 资助金额:
$ 9.3万 - 项目类别:
Studentship
Zero-dimensional semigroup compactifications of locally compact groups
局部紧群的零维半群紧化
- 批准号:
539121-2019 - 财政年份:2019
- 资助金额:
$ 9.3万 - 项目类别:
University Undergraduate Student Research Awards
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2017
- 资助金额:
$ 9.3万 - 项目类别:
Discovery Grants Program - Individual
Thermodynamic formalism for conformal semigroup actions
共形半群作用的热力学形式主义
- 批准号:
15H06416 - 财政年份:2015
- 资助金额:
$ 9.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2015
- 资助金额:
$ 9.3万 - 项目类别:
Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2014
- 资助金额:
$ 9.3万 - 项目类别:
Discovery Grants Program - Individual
Higher Rank Graph Algebras, Multivariate Operator Theory, Free semigroup Algebras, and Functional Equations
高阶图代数、多元算子理论、自由半群代数和函数方程
- 批准号:
358793-2013 - 财政年份:2013
- 资助金额:
$ 9.3万 - 项目类别:
Discovery Grants Program - Individual
The corona factorization property and the Cuntz semigroup in the classification of C*-algebras
C*-代数分类中的电晕分解性质和Cuntz半群
- 批准号:
236576044 - 财政年份:2013
- 资助金额:
$ 9.3万 - 项目类别:
Research Fellowships