Nonlinear Waves
非线性波
基本信息
- 批准号:9705380
- 负责人:
- 金额:$ 21.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9705380 Jonathan Goodman ABSTRACT OF PROPOSAL BY JONATHAN GOODMAN APPLIED ANALYSIS AND COMPUTATION This proposal covers several areas of applied mathematics, applied analysis, and computational science. One area is the mathematical analysis of nonlinear waves and fronts, particularly multidimensional shocks. Another area is control of systems governed by hyperbolic partial differential equations (wave propagation equations) and discrete ``lumped parameter'' approximations to them that would be used in numerical computation of optimal controls. Two main computational areas are: 1: anisotropic adaptive refinement methods for multidimensional approximation and finite element computation, and 2: Monte Carlo methods for computing quantum mechanical properties of systems of interacting electrons. Several other areas, including the research of graduate students under my supervision are discussed. There are several projects described here, most involving collaborations with colleagues, postdoctoral trainees, or graduate students. The project on control of systems governed by hyperbolic differential equations is about methods for removing acoustic noise from structures. This has applications in aircraft and submarine technology and in other places. It fits in with a larger effort to design "smart materials" and "smart structures". Modern sensors, actuators, and computers are fast enough to react to individual sound waves. The mathematical problem is to design good computational "control strategies" that use this ability effectively. The existing mathematical theory of control was developed with smaller, simpler systems in mind and does not apply directly to control of systems where acoustic waves (sound waves) are propagating. We hope that our theory of control will apply to such problems. A more computational project is the attempt to compute the "electronic structure" of molecules from quantum mechanics. The equation to be solved (the Schrodin ger equation) has been known since 1926. Still in 1997, there is no reliable way to solve the Schrodinger equation for systems involving more than one electron (an oxygen atom has 8). The ability to do this would have enormous scientific and technological impact, with applications ranging from superconductivity to drug design.
应用分析与计算这个建议涵盖了应用数学、应用分析和计算科学的几个领域。一个领域是非线性波和锋面的数学分析,特别是多维冲击。另一个领域是由双曲偏微分方程(波传播方程)和离散的“集中参数”近似控制的系统控制,这些近似将用于最优控制的数值计算。两个主要的计算领域是:1:用于多维逼近和有限元计算的各向异性自适应细化方法;2:用于计算相互作用电子系统量子力学特性的蒙特卡罗方法。讨论了其他几个领域,包括我指导的研究生的研究。这里描述了几个项目,大多数涉及与同事、博士后实习生或研究生的合作。双曲型微分方程控制系统的课题是关于从结构中去除噪声的方法。这在飞机和潜艇技术以及其他地方都有应用。它符合设计“智能材料”和“智能结构”的更大努力。现代传感器、执行器和计算机对单个声波的反应速度足够快。数学问题是设计良好的计算“控制策略”,有效地利用这种能力。现有的控制数学理论是在考虑更小、更简单的系统的情况下发展起来的,不能直接应用于声波传播的系统的控制。我们希望我们的控制理论能适用于这类问题。一个更具计算性的项目是尝试从量子力学中计算分子的“电子结构”。要解的方程(薛定谔方程)早在1926年就为人所知。在1997年,还没有可靠的方法来解决涉及多个电子(氧原子有8个)的系统的薛定谔方程。这样做的能力将产生巨大的科学和技术影响,应用范围从超导到药物设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Goodman其他文献
International chemical identifier for chemical reactions
- DOI:
10.1186/1758-2946-5-s1-o16 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:5.700
- 作者:
Guenter Grethe;Jonathan Goodman;Chad Allen - 通讯作者:
Chad Allen
Newton's method for constrained optimization
- DOI:
10.1007/bf01582243 - 发表时间:
1985-11-01 - 期刊:
- 影响因子:2.500
- 作者:
Jonathan Goodman - 通讯作者:
Jonathan Goodman
Teaching residents may affect the margin status of breast-conserving operations
住院医师教学可能影响保乳手术的边缘状态
- DOI:
10.1007/s00595-015-1184-5 - 发表时间:
2016 - 期刊:
- 影响因子:2.5
- 作者:
Gina R. Shirah;Chiu;M. Heberer;L. Wikholm;Jonathan Goodman;Marcia E. Bouton;I. Komenaka - 通讯作者:
I. Komenaka
On the stability of the unsmoothed Fourier method for hyperbolic equations
- DOI:
10.1007/s002110050019 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:2.200
- 作者:
Jonathan Goodman;Thomas Hou;Eitan Tadmor - 通讯作者:
Eitan Tadmor
Can you train the pelvic floor muscles by contracting other related muscles?
可以通过收缩其他相关肌肉来训练骨盆底肌肉吗?
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2
- 作者:
J. Kruger;D. Budgett;Jonathan Goodman;K. Bø - 通讯作者:
K. Bø
Jonathan Goodman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Goodman', 18)}}的其他基金
Pointwise and Semigroup Methods in Viscous Conservation Laws and Completely Integrable Systems
粘性守恒定律和完全可积系统中的点法和半群法
- 批准号:
0101529 - 财政年份:2001
- 资助金额:
$ 21.27万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Waves
数学科学:非线性波
- 批准号:
9404528 - 财政年份:1994
- 资助金额:
$ 21.27万 - 项目类别:
Continuing Grant
New Numerical Methods for Quantum Field Theory and Critical Phenomena
量子场论和临界现象的新数值方法
- 批准号:
9200719 - 财政年份:1992
- 资助金额:
$ 21.27万 - 项目类别:
Continuing Grant
New Numerical Methods for Quantum Field Theory and Critical Phenomena
量子场论和临界现象的新数值方法
- 批准号:
8911273 - 财政年份:1990
- 资助金额:
$ 21.27万 - 项目类别:
Standard Grant
New Numerical Methods for Quantum Field Theory etc.
量子场论的新数值方法等
- 批准号:
8705599 - 财政年份:1987
- 资助金额:
$ 21.27万 - 项目类别:
Standard Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
8553215 - 财政年份:1986
- 资助金额:
$ 21.27万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Conference: Emergent Phenomena in Nonlinear Dispersive Waves
会议:非线性色散波中的涌现现象
- 批准号:
2339212 - 财政年份:2024
- 资助金额:
$ 21.27万 - 项目类别:
Standard Grant
Effect of nonlinear interaction between waves on abrupt bursts of emission in ultra high harmonic ion cyclotron frequency range
波间非线性相互作用对超高谐波离子回旋加速器频率范围内突然发射的影响
- 批准号:
23K03363 - 财政年份:2023
- 资助金额:
$ 21.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer modelling of irregular nonlinear surface waves and their effects on offshore wind turbine structures
不规则非线性表面波的计算机建模及其对海上风力发电机结构的影响
- 批准号:
2889685 - 财政年份:2023
- 资助金额:
$ 21.27万 - 项目类别:
Studentship
CAREER: Guiding and Confining Nonlinear Elastic Waves in Moiré Metastructures
职业:在莫尔超结构中引导和限制非线性弹性波
- 批准号:
2238072 - 财政年份:2023
- 资助金额:
$ 21.27万 - 项目类别:
Standard Grant
Stability of standing waves for the nonlinear Schr\"odinger equation with an external potential
具有外势的非线性薛定谔方程的驻波稳定性
- 批准号:
23K03174 - 财政年份:2023
- 资助金额:
$ 21.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis on solitary waves for nonlinear dispersive equations
非线性色散方程孤立波的数学分析
- 批准号:
22K20337 - 财政年份:2022
- 资助金额:
$ 21.27万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of an input identification based on nonlinear control for seismic waves inducing critical responses, with its experimental validation
开发基于非线性控制的地震波诱发临界响应的输入识别方法并进行实验验证
- 批准号:
22K18838 - 财政年份:2022
- 资助金额:
$ 21.27万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Nonlinear Waves in Lattices and Metamaterials
晶格和超材料中的非线性波
- 批准号:
2204880 - 财政年份:2022
- 资助金额:
$ 21.27万 - 项目类别:
Standard Grant
Mechanical Characterization of Nonlinear Soft Materials Using Surface Waves
使用表面波对非线性软材料进行机械表征
- 批准号:
2200353 - 财政年份:2022
- 资助金额:
$ 21.27万 - 项目类别:
Standard Grant
Collaborative Research: GEM--Energetic Electron Nonlinear Interactions with Oblique Whistler-Mode Chorus Waves
合作研究:GEM--高能电子与斜惠斯勒模式合唱波的非线性相互作用
- 批准号:
2225121 - 财政年份:2022
- 资助金额:
$ 21.27万 - 项目类别:
Standard Grant