Analysis of Some Nonlinear Problems in Electromagnetic Fields

电磁场中一些非线性问题的分析

基本信息

  • 批准号:
    0102261
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2005-04-30
  • 项目状态:
    已结题

项目摘要

NSF Award Abstract - DMS-0102261 Mathematical Sciences: Analysis of Some Nonlinear Problems in Electromagnetic Fields AbstractDMS-0102261 Hong-Ming YinThis project investigates several nonlinear problems arising from the theory of electromagnetic fields and heat conduction. The first problem area concerns investigation of induction heating processes. The mathematical model consists of nonlinear Maxwell's equations coupled with a nonlinear heat equation. The objective is to analyze whether or not thermal runaway (blowup) happens and how to prevent it if it does occur during a heating process. More complicated free boundary problems, modeling phase change during the heating process, are also under study. The second problem area concerns investigation of a p-Laplacian type of evolution system that models the classical Bean's critical-state model in the superconductivity theory. The effort focuses on understanding how the phase change takes place between normal and superconducting states. This project investigates mathematical models of heat flow in situations that involve electromagnetic fields. These models are important for many industrial applications. The results of this work will lead to a better understanding the complicated dynamics of electromagnetic fields and will provide explanations for certain experimental phenomena. In addition, this investigation will produce mathematical results of general interest for the study of Maxwell's equations and nonlinear heat conduction.
美国国家科学基金会奖摘要- DMS-0102261数学科学:电磁场中的一些非线性问题的分析摘要DMS-0102261尹洪明本项目研究电磁场和热传导理论中的几个非线性问题。 第一个问题领域涉及感应加热过程的研究。 数学模型由非线性麦克斯韦方程组和非线性热方程组组成。 其目的是分析是否会发生热失控(爆破),以及如何防止它,如果它确实发生在加热过程中。 更复杂的自由边界问题,在加热过程中模拟相变,也正在研究中。 第二个问题领域涉及调查的p-Laplacian类型的演化系统,模型的经典Bean的临界态模型的超导理论。 这项工作的重点是了解正常状态和超导状态之间的相变是如何发生的。本项目研究在涉及电磁场的情况下热流的数学模型。 这些模型对于许多工业应用都很重要。 这项工作的结果将导致更好地理解电磁场的复杂动力学,并将提供某些实验现象的解释。 此外,这项调查将产生的数学结果的普遍利益的研究麦克斯韦方程组和非线性热传导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hong-Ming Yin其他文献

Regularity of solutions to maxwell's system in quasi-stationary
On Maxwell's Equations with a Temperature Effect, II
On a phase-change problem arising from inductive heating

Hong-Ming Yin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hong-Ming Yin', 18)}}的其他基金

Conference on Progress in Partial Differential Equations and Applications
偏微分方程及其应用进展会议
  • 批准号:
    0140261
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

On some nonlinear reaction diffusion equation arising in population genetics
群体遗传学中一些非线性反应扩散方程的探讨
  • 批准号:
    22K03369
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
  • 批准号:
    RGPIN-2015-06342
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
  • 批准号:
    RGPIN-2015-06342
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
  • 批准号:
    RGPIN-2015-06342
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
  • 批准号:
    RGPIN-2015-06342
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
  • 批准号:
    477896-2015
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Well-Posedness and Long Time Behavior of Some Nonlinear Partial Differential Equations
一些非线性偏微分方程的适定性和长时间行为
  • 批准号:
    1600779
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
  • 批准号:
    RGPIN-2015-06342
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
  • 批准号:
    RGPIN-2015-06342
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for some hard discrete nonlinear optimization problems and applications
一些硬离散非线性优化问题的算法及应用
  • 批准号:
    477896-2015
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了