On some nonlinear reaction diffusion equation arising in population genetics
群体遗传学中一些非线性反应扩散方程的探讨
基本信息
- 批准号:22K03369
- 负责人:
- 金额:$ 2.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2022
- 资助国家:日本
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
研究論文Bifurcation structure of an indefinite nonlinear diffusion problem in population geneticsではここ数年に引き続き上記の遺伝子頻度モデルを扱う.昨年度までの研究では求める解が遺伝子頻度であるため0から1までの解が興味の対象であった.しかし研究を進めるにしたがって0と1の間の定常解の全体像を明らかにするためには自明定常解 $u=1$からの非定数定常解の分岐構造を調べることが可欠になることに気づいた.u=1 からの分岐問題の重要性はFeltrin-Sovrano,Izuharaなどの数値実験の結果などからも裏付けられる.このような生物学的な意義に加え,数学的な意義は次のようである.非線形項が符号を変えるようなロジスティックタイプの方程式の正値定常解の分岐構造を研究は1970年代から国内外でさかんに行われてきた.非線形項が符号を変えない場合には,数えきれないほどの先行研究があるが,非線形項が符号を変える場合には変えない場合に比べて国内外でも研究が始まったばかりと言ってよく,その解の挙動は数学的にも複雑で興味深い.同論文では以下のことを証明した.定常解 u が n 回 1を横切るとき,モードnの解と呼ぶことにする.拡散係数を小さくしていくと定数定常解 $u=1$ からモード1の解,モード2の解・・・が順に分岐することが示される.この分岐の枝の解はモードを変えず,大域的に存在する. モード $n$ の解 $u$ は(境界を含めると)n+2個の極点を持ち,uが1を横切る点と極点は交互に現れる.さらに拡散係数が十分小さいときには,uが1を横切る点(u-1の零点)は境界点,あるいは非線形項が符号を変える点の付近のみに現れることが証明され,モードnの解の詳細な形状が明らかになった.
Research Papers Bifurcation structure of an indefinite-nonlinear diffusion problem in population genetics Last year's research was conducted to find out the frequency of the solution and the object of interest. The importance of the bifurcation problem is Feltrin-Sovrano, Izuhara, and the results of the bifurcation problem are discussed. The meaning of biology is added, and the meaning of mathematics is added. A Study on the Positive Value Steady Solution of Non-linear Term Equation and Its Bifurcation Structure in the 1970s Non-linear term The same paper as the following proof. Steady solution u n 1 The dispersion coefficient is small, and the constant solution $u=1$is the solution of 1, and the solution of 2 is the solution of 2. The solution of this divergence is that there exists a large domain. $n$and $u$(boundary) n+2 poles are held, u 1 is transverse to the pole and the pole is interactive. The dispersion coefficient is very small, u is 1, cross point (u-1 and zero point), boundary point, non-linear term, sign, point, close point, proof, detailed shape of solution.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
中島 主恵其他文献
RADIAL AND NONRADIAL STEADY-STATES WITH CLUSTERING LAYERS IN ALLEN CAHN EQUATION(Variational Problems and Related Topics)
艾伦·卡恩方程中具有聚类层的径向和非径向稳态(变分问题和相关主题)
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
中島 主恵 - 通讯作者:
中島 主恵
中島 主恵的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('中島 主恵', 18)}}的其他基金
非線型拡散方程式系に現れる遷移層のダイナミクスの研究
非线性扩散方程系统中过渡层的动力学研究
- 批准号:
16740090 - 财政年份:2004
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
非線型拡散方程式における特異極限と界面現象の研究
非线性扩散方程中奇异极限和界面现象的研究
- 批准号:
13740119 - 财政年份:2000
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
非線型放物型方程式系の正値定常解の大域的構造について
非线性抛物方程组正平稳解的全局结构
- 批准号:
96J05451 - 财政年份:1998
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for JSPS Fellows
相似海外基金
楕円型方程式の特異摂動問題に関する研究
椭圆方程奇异摄动问题的研究
- 批准号:
17740092 - 财政年份:2005
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
非線形偏微分方程式の解の構造と特異摂動問題の研究
非线性偏微分方程与奇异摄动问题的解结构研究
- 批准号:
01F00178 - 财政年份:2001
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Hamilton-Jacobi 方程式に対する特異摂動問題の研究
Hamilton-Jacobi方程奇异摄动问题的研究
- 批准号:
08640236 - 财政年份:1996
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
非線形特異摂動問題の力学系的研究とその応用
非线性奇异摄动问题动力系统研究及其应用
- 批准号:
05740099 - 财政年份:1993
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)