Applications and Extensions of Likelihood Methods

似然法的应用和扩展

基本信息

  • 批准号:
    0102274
  • 负责人:
  • 金额:
    $ 8.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-15 至 2005-07-31
  • 项目状态:
    已结题

项目摘要

The proposed research considers several problems in the higher-order asymptotic theory of likelihood-based inference. Many higher-order approximations apply only to the case in which the underlying data have a continuous distribution. The proposed research considers the extension of these results to the case in which the underlying data have a lattice distribution. A second aspect of the research is the development of methods for models with a hierarchical structure. Likelihood methods are generally derived under the assumption that the likelihood function is correctly specified. Of course, in practice, the probability models used are often only an approximation to the true, but unknown, models. Hence, the proposed research considers the development of methods that are based on more limited assumptions, such as moment conditions. Statistical methods based on the likelihood function play a central role in statistical theory and methodology. Many of these methods are based on approximations which may have questionable accuracy in certain cases. The proposed research develops methods of approximation with generally higher accuracy. The result is statistical methods that offer an improvement over those currently available.
所提出的研究考虑了基于似然推理的高阶渐近理论中的几个问题。许多高阶近似仅适用于基础数据具有连续分布的情况。拟议的研究考虑将这些结果扩展到基础数据具有格子分布的情况。研究的第二个方面是开发具有层次结构的模型方法。似然方法通常是在正确指定似然函数的假设下导出的。当然,在实践中,所使用的概率模型通常只是真实但未知的模型的近似。因此,拟议的研究考虑开发基于更有限的假设(例如矩条件)的方法。 基于似然函数的统计方法在统计理论和方法中发挥着核心作用。许多这些方法都是基于近似值,在某些情况下其准确性可能存在问题。所提出的研究开发了精度普遍更高的近似方法。 其结果是统计方法比目前可用的方法有所改进。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Severini其他文献

A flexible approach to inference in semiparametric regression models with correlated errors using Gaussian processes
使用高斯过程在具有相关误差的半参数回归模型中进行灵活的推理方法
Integrated likelihood inference in semiparametric regression models
半参数回归模型中的综合似然推断
  • DOI:
    10.1007/s40300-014-0042-3
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heping He;Thomas Severini
  • 通讯作者:
    Thomas Severini

Thomas Severini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Severini', 18)}}的其他基金

Statistical Inference Based on an Integrated Likelihood
基于综合似然的统计推断
  • 批准号:
    1308009
  • 财政年份:
    2013
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Likelihood Inference in Models with a High-Dimensional Nuisance Parameter
具有高维干扰参数的模型中的似然推断
  • 批准号:
    0906466
  • 财政年份:
    2009
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Integrated Likelihood Functions for Non-Bayesian Inference
非贝叶斯推理的积分似然函数
  • 批准号:
    0604123
  • 财政年份:
    2006
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Likelihood Methods in Statistics
统计学中的似然法
  • 批准号:
    9803143
  • 财政年份:
    1998
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Conditional Inference in the Presenceof a Nuisance Parameter
数学科学:存在干扰参数时的条件推理
  • 批准号:
    9107062
  • 财政年份:
    1991
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332468
  • 财政年份:
    2024
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Continuing Grant
Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
  • 批准号:
    23K10979
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multivariable and Higher order extensions of discrete Painlev\'e equaitons
离散 Painlev 方程的多变量和高阶扩展
  • 批准号:
    23K03173
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: characterizing and optimizing extensions of LCDM
RUI:表征和优化 LCDM 的扩展
  • 批准号:
    2308173
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Standard Grant
Extensions of matroid Hodge theory
拟阵霍奇理论的扩展
  • 批准号:
    EP/X001229/1
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Research Grant
Ore extensions of trusses
矿石桁架延伸
  • 批准号:
    2893931
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Studentship
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
  • 批准号:
    479481
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
    Operating Grants
Assessing Tele-Health Outcomes in Multiyear Extensions of Parkinson's Disease Trials-2 (AT-HOME PD-2)
评估帕金森病多年扩展试验中的远程医疗结果 Trials-2 (AT-HOME PD-2)
  • 批准号:
    10658165
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
Evaluating Medicaid Postpartum Coverage Extensions through an Equity Lens
通过公平视角评估医疗补助产后覆盖​​范围扩展
  • 批准号:
    10594173
  • 财政年份:
    2023
  • 资助金额:
    $ 8.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了