Extensions of matroid Hodge theory
拟阵霍奇理论的扩展
基本信息
- 批准号:EP/X001229/1
- 负责人:
- 金额:$ 42.75万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Combinatorics is the branch of mathematics that includes questions about counting discrete structures. For example, given a map drawn in outline, and some number of colours, in how many ways can you colour in the regions in the map so that any two bordering regions are different colours? Many unsolved problems in combinatorics ask about inequalities involving these counts. The four colour theorem -- that with four colours, the number of colourings is greater than zero -- is a famous example: it is no longer an unsolved problem, but its solution in 1976 was by a long computer search and many mathematicians would still like a more conceptual answer.The proposed research is to apply to these problems techniques from algebraic geometry, which is the geometric study of solutions to systems of polynomial equations. A breakthrough in this respect was made in 2018 by Adiprasito, Huh and Katz. They used inequalities from the part of algebraic geometry called Hodge theory to answer a 40-year-old open problem posed by Read, Welsh and others. In terms of map colouring, the number of colourings turns out to be a polynomial function of the number of colours available; Read's problem was about how the coefficients of this polynomial grow. I will be extending those techniques.The combinatorial objects the questions are actually about are called matroids. For every map there is a matroid. A matroid comes with a set of objects, and picks out certain smaller sets of those objects as being compatible with each other, or as mathematicians say, independent. In the example of maps, a set of borders is independent if there's no way to walk in a loop through some of those borders and arrive back where you started without crossing the same one twice. Other matroids come from matrices. But there are so-called unrepresentable matroids that don't come from these sources. When a matroid does come from a map or a matrix, we can use that to write down a system of equations to study geometrically. What Adiprasito, Huh and Katz established is that even for unrepresentable matroids, where the system of equations does not exist, the Hodge theory still works as if it did exist. Working with these shadows of a geometric object that doesn't actually exist, as it were, contributes to the difficulty of these problems.Matroids have many applications including in mathematical optimisation, codes, physics, statistics, and biology. For example, one of the still unsolved problems I will work on is about the "interlace polynomial", which was invented as part of the study of knotting and recombination in DNA strands.
组合数学是数学的一个分支,它包括对离散结构进行计数的问题。例如,给定一幅用轮廓线画出的地图,以及一些颜色,你可以用多少种方法给地图中的区域上色,使任何两个相邻的区域都是不同的颜色?组合数学中许多未解决的问题都涉及到这些计数的不等式。四色定理(four colour theorem)--即有四种颜色时,着色数大于零--是一个著名的例子:它不再是一个未解决的问题,但它的解决方案在1976年是由一个长期的计算机搜索和许多数学家仍然希望一个更概念性的答案。拟议的研究是适用于这些问题的技术,从代数几何,这是对多项式方程组解的几何研究。2018年,Adiprasito、Huh和Katz在这方面取得了突破。他们使用代数几何中称为霍奇理论的不等式来回答由里德、威尔士和其他人提出的一个40年前的公开问题。在地图着色方面,着色的数量是可用颜色数量的多项式函数; Read的问题是这个多项式的系数如何增长。我将扩展这些技巧,这些问题实际上涉及的组合对象叫做拟阵。每个映射都有一个拟阵。拟阵带有一组对象,并挑选出这些对象中的某些较小的集合,使其相互兼容,或者用数学家的话说,相互独立。在地图的例子中,一组边界是独立的,如果没有办法在一个循环中穿过其中的一些边界,并在不穿过同一边界两次的情况下回到起点。其他拟阵来自矩阵。但也有所谓的不可表示拟阵,不是来自这些来源。当一个拟阵确实来自一个映射或矩阵时,我们可以用它来写出一个方程组,以进行几何研究。Adiprasito,Huh和Katz建立的是,即使对于不可表示的拟阵,方程组不存在,Hodge理论仍然像它确实存在一样工作。拟阵在数学优化、编码、物理学、统计学和生物学等领域有着广泛的应用。例如,我将要研究的一个尚未解决的问题是关于“交织多项式”,它是作为DNA链中打结和重组研究的一部分而发明的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extensions of transversal valuated matroids
横向定值拟阵的扩展
- DOI:10.48550/arxiv.2308.05556
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fink A
- 通讯作者:Fink A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Fink其他文献
Grid-Based Look-Up Table Optimization Toolbox
- DOI:
10.1016/s1474-6670(17)39857-9 - 发表时间:
2000-06-01 - 期刊:
- 影响因子:
- 作者:
Oliver Nelles;Alexander Fink - 通讯作者:
Alexander Fink
Under what conditions may social contracts arise? Evidence from the Hanseatic League
- DOI:
10.1007/s10602-010-9099-z - 发表时间:
2010-12-09 - 期刊:
- 影响因子:0.700
- 作者:
Alexander Fink - 通讯作者:
Alexander Fink
Surfacing Human Service Organizations' Data Use Practices: Toward a Critical Performance Measurement Framework: From the 2021 Community Informatics Research Network (CIRN) Conference
揭示人类服务组织的数据使用实践:迈向关键绩效衡量框架:来自 2021 年社区信息学研究网络 (CIRN) 会议
- DOI:
10.15353/joci.v18i1.4712 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Alexander Fink;R. V. Roholt - 通讯作者:
R. V. Roholt
Political entrepreneurship and the formation of special districts
政治创业与特区的形成
- DOI:
10.1007/s10657-010-9216-5 - 发表时间:
2010 - 期刊:
- 影响因子:1.3
- 作者:
Alexander Fink;R. Wagner - 通讯作者:
R. Wagner
The financial system matters: future perspectives and scenarios for a sustainable future
- DOI:
10.1016/j.futures.2004.07.004 - 发表时间:
2005-05-01 - 期刊:
- 影响因子:
- 作者:
Stefan Brunnhuber;Alexander Fink;Jens-Peter Kuhle - 通讯作者:
Jens-Peter Kuhle
Alexander Fink的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Fink', 18)}}的其他基金
相似海外基金
The critical group of a topological graph: an approach through delta-matroid theory
拓扑图的临界群:一种通过 Delta 拟阵理论的方法
- 批准号:
EP/W033038/1 - 财政年份:2022
- 资助金额:
$ 42.75万 - 项目类别:
Research Grant
Critical number of a binary matroid
二元拟阵的临界数
- 批准号:
573009-2022 - 财政年份:2022
- 资助金额:
$ 42.75万 - 项目类别:
University Undergraduate Student Research Awards
The critical group of a topological graph: an approach through delta-matroid theory
拓扑图的临界群:一种通过 Delta 拟阵理论的方法
- 批准号:
EP/W032945/1 - 财政年份:2022
- 资助金额:
$ 42.75万 - 项目类别:
Research Grant
Algorithms and structural matroid theory
算法和结构拟阵理论
- 批准号:
RGPIN-2016-03886 - 财政年份:2021
- 资助金额:
$ 42.75万 - 项目类别:
Discovery Grants Program - Individual
Matroid Elevations and Rigid Frameworks
拟阵高程和刚性框架
- 批准号:
EP/T030461/1 - 财政年份:2021
- 资助金额:
$ 42.75万 - 项目类别:
Research Grant
Applications of structural matroid theory to minor-closed classes of codes
结构拟阵理论在小闭类码中的应用
- 批准号:
RGPIN-2016-04131 - 财政年份:2021
- 资助金额:
$ 42.75万 - 项目类别:
Discovery Grants Program - Individual
Applications of structural matroid theory to minor-closed classes of codes
结构拟阵理论在小闭类码中的应用
- 批准号:
RGPIN-2016-04131 - 财政年份:2020
- 资助金额:
$ 42.75万 - 项目类别:
Discovery Grants Program - Individual
Exploration into Matroid Common Base Packing Problem
Matroid公共基础装箱问题探讨
- 批准号:
20K19743 - 财政年份:2020
- 资助金额:
$ 42.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Applications of structural matroid theory to minor-closed classes of codes
结构拟阵理论在小闭类码中的应用
- 批准号:
RGPIN-2016-04131 - 财政年份:2019
- 资助金额:
$ 42.75万 - 项目类别:
Discovery Grants Program - Individual
Tutte多項式とそのアレンジメント理論への応用
Tutte多项式及其在排列理论中的应用
- 批准号:
19J12024 - 财政年份:2019
- 资助金额:
$ 42.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows