Structured Deformations and the Microgeometry of Continua

康体佳的结构化变形和微观几何

基本信息

  • 批准号:
    0102477
  • 负责人:
  • 金额:
    $ 6.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2005-07-31
  • 项目状态:
    已结题

项目摘要

DMS Award AbstractAward #: 0102477PI: Owen, DavidInstitution: Carnegie Mellon University Program: Applied MathematicsProgram Manager: Catherine MavriplisTitle: Structured Deformations and the Microgeometry of ContinuaStructured deformations provide a multiscale geometry and kinematics for describing the effects at the macrolevel of both smooth and non-smooth deformations occurring at submacroscopic levels. The proposed research focuses on (i) applying this recently developed multiscale geometry to refine and improve important continuum descriptions of single crystals undergoing slipping on more than one crystallographic system, (ii) identifying via a relaxation technique from the calculus of variations a geometrical variable that measures the volume swept out by submacroscopic vacancies and understanding the connection between this variable and different types of dislocation movements, and (iii) obtaining relations that complete the system of balance laws and constitutive relations that arise when a continuous body undergoes structured deformations and motions. This research bears on the fields of materials science and engineering and on the mathematical study of geometry at multiple length and time scales. The geometrical changes in a deforming paper clip or other metallic body that appear continuous and smooth to the naked eye often appear to be jerky and abrupt when viewed in a microscope. Similarly, the smooth stretching of a plastic sandwich bag or other thin plastic film appears differently at macroscopic and submacroscopic scales. The most successful theories for studying macroscopic changes in a body - paper clip, sandwich bag, or otherwise -- brought about by applied forces or heat sources are called field theories. The success of field theories rests first on our physical understanding of how a particular substance, e.g., the particular metal comprising the paper clip or the particular plastic constituting the sandwich bag, influences the detailed form of the field theories and, second, on our mathematical understanding of the equations that comprise the field theory. The research undertaken in this project is part of an ongoing program to enrich these field theories by permitting them to describe and predict the behavior of a body that changes shape differently at macroscopic and submacroscopic length scales. The desired outcome of this research is refined, improved field theories that permit more accurate simulations of the behavior of technologically important materials.Date: June 25, 2001
DMS Award AbstractAward #: 0102477 PI: Owen,David机构: 卡内基梅隆大学 应用数学项目经理:Catherine Mavriplis职务:结构化变形和连续体的微观几何结构化变形提供了一个多尺度的几何和运动学,用于描述在宏观水平上发生在亚宏观水平上的光滑和非光滑变形的影响。 拟议的研究重点是(i)应用这种最近开发的多尺度几何来细化和改进在一个以上的晶体系统上经历滑动的单晶的重要连续描述,(二)通过松弛技术从变分法中识别出测量亚宏观空位扫出的体积的几何变量,并理解该变量与不同类型的位错运动,和(iii)获得的关系,完成系统的平衡法律和本构关系时,出现一个连续的身体经历结构化的变形和运动。 这项研究涉及材料科学和工程领域,以及在多个长度和时间尺度上的几何数学研究。 在变形的回形针或其他金属体中,肉眼看起来连续和光滑的几何变化在显微镜下观察时往往显得不稳定和突然。 类似地,塑料夹层袋或其他薄塑料膜的平滑拉伸在宏观尺度和亚宏观尺度上表现不同。 研究物体(回形针、三明治袋或其他物体)因外力或热源而产生的宏观变化的最成功的理论称为场论。 场论的成功首先取决于我们对一种特定物质的物理理解,例如,构成回形针的特定金属或构成夹层袋的特定塑料影响场论的详细形式,其次,影响我们对构成场论的方程的数学理解。 在这个项目中进行的研究是一个正在进行的计划的一部分,以丰富这些领域的理论,允许他们描述和预测的行为,改变形状不同的身体在宏观和亚宏观的长度尺度。 这项研究的预期成果是精炼、改进的场论,可以更精确地模拟技术上重要的材料的行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Owen其他文献

Locke and Hume on Belief, Judgment and Assent
洛克和休谟论信仰、判断和同意
  • DOI:
    10.1023/a:1022155914522
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Owen
  • 通讯作者:
    David Owen
Measuring Cortical Neurite-Dispersion and Perfusion in Preterm-Born Adolescents Using Multi-modal MRI
使用多模态 MRI 测量早产青少年的皮质神经突分散和灌注
Scepticism with regard to reason
对理性的怀疑
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Owen
  • 通讯作者:
    David Owen
CHAPTER 25 – Anus
第25章-肛门
Teacher workload survey 2016
2016年教师工作量调查
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Higton;S. Leonardi;A. Choudhoury;N. Richards;David Owen;N. Sofroniou
  • 通讯作者:
    N. Sofroniou

David Owen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Owen', 18)}}的其他基金

MRC Transition Support CSF David Owen
MRC 过渡支持 CSF David Owen
  • 批准号:
    MR/T031891/1
  • 财政年份:
    2020
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Fellowship
The Role of 18kDa Translocator Protein (TSPO) in cellular bioenergetics and microglial activation
18kDa 易位蛋白 (TSPO) 在细胞生物能学和小胶质细胞激活中的作用
  • 批准号:
    MR/N008219/1
  • 财政年份:
    2016
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Fellowship
Mathematical Sciences: Structured Deformations and the Microgeometry of Continua
数学科学:结构变形和康体佳微观几何
  • 批准号:
    9703863
  • 财政年份:
    1997
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Continuing Grant
GC/MS and LC/MS in Chemistry, Biology, and Reservoir Ecology Instruction
化学、生物学和水库生态学教学中的 GC/MS 和 LC/MS
  • 批准号:
    9151365
  • 财政年份:
    1991
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant

相似海外基金

Reaching new frontiers of quantum fields and gravity through deformations
通过变形达到量子场和引力的新前沿
  • 批准号:
    DP240101409
  • 财政年份:
    2024
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Discovery Projects
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
  • 批准号:
    2304797
  • 财政年份:
    2023
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
New Rules for Coupled Severe Plastic Deformations, Phase Transformations, and Structural Changes in Metals under High Pressure
高压下金属耦合严重塑性变形、相变和结构变化的新规则
  • 批准号:
    2246991
  • 财政年份:
    2023
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
Laparoscopic surgical dynamic navigation using maximum likelihood estimation of organ deformations
使用器官变形最大似然估计的腹腔镜手术动态导航
  • 批准号:
    23H00480
  • 财政年份:
    2023
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Clarification of Time-Dependent Deformations Mechanisms and Development of Countermeasures in Tunnels Excavated in Swelling Ground
膨胀土中开挖隧道随时间变形机制的阐明及对策的制定
  • 批准号:
    23K04023
  • 财政年份:
    2023
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Buckly-grains: a model system for elucidating interplay of extreme deformations and reconfigurations
Buckly-grains:用于阐明极端变形和重构相互作用的模型系统
  • 批准号:
    22KF0084
  • 财政年份:
    2023
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Models for Galois deformations and Applications
职业:伽罗瓦变形模型和应用
  • 批准号:
    2237237
  • 财政年份:
    2023
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Continuing Grant
Symmetry-restored two-centre self-consistent approach to fission with arbitrary deformations, orientations, and distance of fragments
具有任意变形、方向和碎片距离的对称性恢复的两中心自洽裂变方法
  • 批准号:
    ST/W005832/1
  • 财政年份:
    2022
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Research Grant
Integrable models and deformations of vertex algebras via symmetric functions
通过对称函数的顶点代数的可积模型和变形
  • 批准号:
    EP/V053787/1
  • 财政年份:
    2022
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Research Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
  • 批准号:
    2212148
  • 财政年份:
    2022
  • 资助金额:
    $ 6.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了