Automorphisms of 3-manifolds

3-流形的自同构

基本信息

  • 批准号:
    0102463
  • 负责人:
  • 金额:
    $ 6.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2003-07-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0102463Principal Investigator: Darryl McCulloughThe proposed work advances a number of research projects in thearea of low-dimensional topology. Their unifying theme is theautomorphisms of 3-dimensional manifolds, including homotopyequivalences, diffeomorphisms, and isometries. Specific projectsinclude: the Generalized Smale Conjecture for elliptic3-manifolds, the isomorphism problem for diffeomorphism groups ofelliptic 3-manifolds, generalization of the Abikoff-Maskitstructure theory for Kleinian groups using topological methods,investigation of free actions of finite groups on orientablehandlebodies using Nielsen equivalence classes of generatingsets, and fibration theorems for spaces of fiber-preservingdiffeomorphisms of manifolds having fiberings and singularfiberings.The primary mathematical constructs that will be investigated are3-manifolds, which are geometric objects locally modeled on the3-dimensional spatial structure of the physical universe, andgroups, which are algebraic systems with an operation akin to theaddition of ordinary numbers. Some of the ongoing work hasalready been applied in the theoretical physics of gravitation,but most of its applications are entirely within puremathematics. The guiding philosophy of most of the research is touse topological and geometric structure of 3-manifolds tounderstand groups of symmetries and other kinds ofautomorphisms. Groups of automorphisms of a mathematical objectoften exhibit their own interesting structure. A classic exampleof this is the finite-dimensional vector spaces. They are rathersimple objects, but their automorphism groups, the general lineargroups, have a rich structure and find wide-ranging uses inmathematics and physics. Within the proposed work, an example isthe 3-manifolds called handlebodies. These are among the simplest3-manifolds to describe topologically, but their groups ofsymmetries are subtle and varied. In fact, any finite group canbe a group of symmetries of some handlebody, and the number ofdistinct ways that a group can act as symmetries on a givenhandlebody can be quite large. A different use of the philosophyinvolves Kleinian groups, which are discrete groups of symmetriesof 3-dimensional hyperbolic space. Each Kleinian group produces aquotient 3-manifold, and one of the projects uses the topologicalstructure of these quotient 3-manifolds to give an algebraicclassification of Kleinian groups.
摘要奖:DMS-0102463主要研究人员:Darryl McCullow建议的工作推进了低维拓扑领域的一些研究项目。它们的统一主题是三维流形的自同构,包括同伦同构、微分同构和等距映射。具体项目包括:椭圆三维流形的广义斯梅尔猜想,椭圆三维流形的微分同构群的同构问题,用拓扑方法推广Klein群的Abikoff-Maskit结构理论,利用生成集的Nielsen等价类研究有限群在可定向手柄上的自由作用,以及具有纤维和奇异纤维的流形的保纤维微分同态空间的纤颤定理。将研究的主要数学结构是三维流形和群,它们是局部模拟在物理宇宙的三维空间结构上的几何对象,以及群,它们是具有类似于普通数相加的运算的大脑代数系统。一些正在进行的工作已经应用于引力的理论物理,但它的大多数应用完全在纯数学范围内。大多数研究的指导思想是利用三维流形的拓扑和几何结构来理解对称群和其他类型的自同构。数学对象的自同构群通常表现出它们自己的有趣结构。有限维向量空间就是一个典型的例子。它们是相对简单的物体,但它们的自同构群,即一般的线性群,具有丰富的结构,并在数学和物理中得到广泛的应用。在拟议的工作中,一个例子是称为手柄的3-流形。这些是最简单的拓扑学描述的3-流形之一,但它们的对称组是微妙的和不同的。事实上,任何有限群都可以是某个手柄上的对称性的群,而一个群可以作为给定手柄上的对称的不同方式的数量可能相当大。哲学的另一种用法涉及克莱因群,它是三维双曲空间的离散对称群。每个Klein群产生水的3-流形,其中一个项目利用这些商3-流形的拓扑结构给出了Klein群的代数分类。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Darryl McCullough其他文献

Iterated splitting and the classification of knot tunnels
结隧道的迭代分裂和分类
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sangbum Cho;Darryl McCullough
  • 通讯作者:
    Darryl McCullough
Elliptic Three-Manifolds Containing One-Sided Klein Bottles
包含单面克莱因瓶的椭圆形三歧管
  • DOI:
    10.1007/978-3-642-31564-0_4
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sungbok Hong;J. Kalliongis;Darryl McCullough;J. Rubinstein
  • 通讯作者:
    J. Rubinstein
Twist groups of compact 3-manifolds
紧凑型 3 歧管扭转组
  • DOI:
    10.1016/0040-9383(85)90015-1
  • 发表时间:
    1985
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Darryl McCullough
  • 通讯作者:
    Darryl McCullough
Isotopies of 3-manifolds
3-流形的同位素
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Kalliongis;Darryl McCullough
  • 通讯作者:
    Darryl McCullough
COMPACT SUBMANIFOLDS OF 3-MANIFOLDS WITH BOUNDARY
有边界的 3 流形的紧凑子流形
  • DOI:
  • 发表时间:
    1986
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Darryl McCullough
  • 通讯作者:
    Darryl McCullough

Darryl McCullough的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Darryl McCullough', 18)}}的其他基金

Tunnel Number 1 Knots
隧道 1 节
  • 批准号:
    0802424
  • 财政年份:
    2008
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Investigations of Three-dimensional Manifolds and Their Mappings
数学科学:三维流形及其映射的研究
  • 批准号:
    8701666
  • 财政年份:
    1987
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Homotopy Equivalences and Homeomorphisms of 3-Manifolds
数学科学:3-流形的同伦等价和同态
  • 批准号:
    8420067
  • 财政年份:
    1985
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Standard Grant
Ce Dimension-Raising Problem; Self-Homotopy-Equivalences AndAutomorphisms of Manifolds
Ce 升维问题;
  • 批准号:
    8101886
  • 财政年份:
    1981
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
  • 批准号:
    2350309
  • 财政年份:
    2024
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Standard Grant
Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
  • 批准号:
    DP240102350
  • 财政年份:
    2024
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Discovery Projects
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
  • 批准号:
    2343868
  • 财政年份:
    2024
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
  • 批准号:
    2338843
  • 财政年份:
    2023
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Continuing Grant
Surfaces in 4-manifolds and modified surgery theory
4 流形表面和改进的手术理论
  • 批准号:
    2347230
  • 财政年份:
    2023
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Standard Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
  • 批准号:
    2304990
  • 财政年份:
    2023
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Standard Grant
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
  • 批准号:
    23K12970
  • 财政年份:
    2023
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ergodic Properties of Smooth Systems on Manifolds
流形上光滑系统的遍历性质
  • 批准号:
    2247572
  • 财政年份:
    2023
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Standard Grant
Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Continuing Grant
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
  • 批准号:
    2306204
  • 财政年份:
    2023
  • 资助金额:
    $ 6.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了