Geometric aspects of interior-point algorithms of optimization
优化内点算法的几何方面
基本信息
- 批准号:0102628
- 负责人:
- 金额:$ 9.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal: DMS 0102628Principal Investigator: Leonid FayBusovich, Department of Mathematics, University of Notre DameAbstract.PI analyzes geometric and algebraic structures arising in connection with optimization problems. The major goal is to further expand the domain of applications of interior-point algorithms. A method based on the theory of random matrices is proposed to calculate characteristic functions of cones generated by Chebyshev systems and thus self-concordant barriers for these cones. This drastically expands the domain of applicability of interior-point algorithms. In particular, possible applications to spline approximations are outlined. A general approach to the construction of self-concordant barriers for a broad class of infinite-dimensional domains is proposed. The technique of JB-algebras is suggested to carry over the recent impressive applications of the theory of Euclidean Jordan algebras to symmetric programming to the infinite-dimensional situation. Possible control applications are outlined.The theory of interior-point algorithms provides a general framework for the analysis of a broad class of extremely efficient optimization algorithms. These algorithms are used to solve problems aiming at finding the best possible solutions under various constraints (e.g. time constraints , available resources e.t.c ). The realization of the project will enable us to drastically expand a class of problems that can be solved with the help of powerful modern computers.
提案:DMS 0102628首席研究员:Leonid FayBusovich,圣母大学数学系PI分析与最优化问题有关的几何和代数结构。主要目标是进一步拓展内点算法的应用领域。提出了一种基于随机矩阵理论的计算切比雪夫系统生成的锥体特征函数的方法,从而计算出这些锥体的自调和障碍。这极大地扩展了内点算法的适用范围。特别地,概述了样条近似的可能应用。提出了一类广泛的无限维域的自和谐屏障构造的一般方法。建议使用jb -代数技术将欧几里得约当代数理论在无限维情况下的对称规划中的令人印象深刻的应用延续下去。概述了可能的控制应用。内点算法理论为分析一类非常高效的优化算法提供了一个总体框架。这些算法用于解决在各种约束条件下(如时间限制、可用资源等)寻找最佳可能解决方案的问题。这个项目的实现将使我们能够在强大的现代计算机的帮助下大大扩展一类问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Faybusovich其他文献
Simplex method and groups generated by reflections
- DOI:
10.1007/bf00049569 - 发表时间:
1990-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Leonid Faybusovich - 通讯作者:
Leonid Faybusovich
Long-step path-following algorithm for solving symmetric programming problems with nonlinear objective functions
- DOI:
10.1007/s10589-018-0054-7 - 发表时间:
2018-12-15 - 期刊:
- 影响因子:2.000
- 作者:
Leonid Faybusovich;Cunlu Zhou - 通讯作者:
Cunlu Zhou
Leonid Faybusovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Faybusovich', 18)}}的其他基金
Algebraic and Geometric aspects of Optimization
优化的代数和几何方面
- 批准号:
0712809 - 财政年份:2007
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
Interior-point methods of optimization: extensions and applications
内点优化方法:扩展和应用
- 批准号:
0402740 - 财政年份:2004
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamical Systems, Complexity and Optimization
数学科学:动力系统、复杂性和优化
- 批准号:
9423279 - 财政年份:1995
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 9.5万 - 项目类别:
Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
- 批准号:
2903280 - 财政年份:2024
- 资助金额:
$ 9.5万 - 项目类别:
Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
- 批准号:
2340195 - 财政年份:2024
- 资助金额:
$ 9.5万 - 项目类别:
Continuing Grant
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Studentship
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
- 批准号:
23K01192 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
- 批准号:
23K00265 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
- 批准号:
2332366 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
- 批准号:
2315822 - 财政年份:2023
- 资助金额:
$ 9.5万 - 项目类别:
Standard Grant