Interior-point methods of optimization: extensions and applications
内点优化方法:扩展和应用
基本信息
- 批准号:0402740
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Four topics are discussed in the proposal: explicit and approximate computations of universal barrier functions for various classes of semi-infinite programming problems, infinite-dimensional primal-dual algorithms with applications to multi-criteria and robust control problems, wireless communication and global optimization based on convex relaxations and a generalization of the theory of interior-point algorithms to Riemannian manifolds. Proposal introduces several new ideas and techniques for better undersanding the mathematical structure of interior-point algorithms. PI heavily relies upon classical results of M. Krein, A. Nudelman, I. Schoenberg on multidimensional versions of isoperimetric inequalities and totally positive matrices in computation of new important classes of universal barrier functions, on the theory of infinite-dimensional Jordan algebras for the analysis of infinite-dimensional primal-dual algorithms and control applications. PI brings some number-theoretic ideas related to Hilbert identities and classical constructions of so-called spherical designs to the global optimization. Semi-infinite programming problems appear in various applications: separation of sets in pattern recognition (e.g. medical diagnostics , identification with applications in home land security), environmental policies, robustness in Bayesian statistics, optimal experimental design in regression, the efficiency of industrial processes, filtering design in electrical engineering etc. The progress in resolving algorithmic issues for this class of problems may potentially have a tremendous impact on various applications (especially, in the situations where fast and optimal online decisions are necessary). Development of software for solving robust , multi-criteria control problems may be of importance in such diverse applications as stabilization of various complex structures in extreme situations (earthquakes, overloads of energy systems), prediction of the behavior of stock markets and control of spacecrafts.
四个主题的建议进行了讨论:明确和近似计算的通用障碍函数的各类半无限规划问题,无限维原始对偶算法与应用程序的多准则和鲁棒控制问题,无线通信和全局优化的基础上凸松弛和推广的理论的边界点算法黎曼流形。提出了一些新的思想和技术,以更好地理解的数学结构的邻域点算法。PI严重依赖于M. Krein,A.努德曼岛勋伯格在多维版本的等周不等式和完全正矩阵的计算新的重要类的普遍障碍函数,对理论的无限维约旦代数的分析无限维原始对偶算法和控制的应用。PI带来了一些数论思想有关希尔伯特恒等式和经典结构的所谓的球形设计的全局优化。 半无限规划问题出现在各种应用中:模式识别中的集合分离(例如医疗诊断、在国土安全中的应用)、环境政策、贝叶斯统计的稳健性、回归中的最佳实验设计、工业过程的效率、解决这类问题的算法问题的进展可能对各种应用产生巨大影响(特别是在需要快速和最佳在线决策的情况下)。开发解决鲁棒多准则控制问题的软件在极端情况下(地震、能源系统过载)各种复杂结构的稳定、股票市场行为的预测和航天器的控制等各种应用中可能具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonid Faybusovich其他文献
Simplex method and groups generated by reflections
- DOI:
10.1007/bf00049569 - 发表时间:
1990-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Leonid Faybusovich - 通讯作者:
Leonid Faybusovich
Long-step path-following algorithm for solving symmetric programming problems with nonlinear objective functions
- DOI:
10.1007/s10589-018-0054-7 - 发表时间:
2018-12-15 - 期刊:
- 影响因子:2.000
- 作者:
Leonid Faybusovich;Cunlu Zhou - 通讯作者:
Cunlu Zhou
Leonid Faybusovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonid Faybusovich', 18)}}的其他基金
Algebraic and Geometric aspects of Optimization
优化的代数和几何方面
- 批准号:
0712809 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Geometric aspects of interior-point algorithms of optimization
优化内点算法的几何方面
- 批准号:
0102628 - 财政年份:2001
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Mathematical Sciences: Dynamical Systems, Complexity and Optimization
数学科学:动力系统、复杂性和优化
- 批准号:
9423279 - 财政年份:1995
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
单片三维相变存储器高速高可靠读取技术研究
- 批准号:61904186
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
解大型非对称鞍点(Saddle Point) 问题的有效算法的研究
- 批准号:60573157
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Interior point branch-and-cut methods for large scale integer programming
大规模整数规划的内点分支割法
- 批准号:
387379-2009 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Warmstarting Techniques for Stochastic Programming Problems solved by Interior Point Methods
内点法求解随机规划问题的热启动技术
- 批准号:
EP/E036910/1 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Efficient Interior-Point Methods for Mixed-Integer Nonlinear and Conic Programming
混合整数非线性和圆锥规划的高效内点方法
- 批准号:
0725692 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Interior Point Methods for Complementarity Problems
互补问题的内点法
- 批准号:
0728878 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
- 批准号:
249491-2002 - 财政年份:2006
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Interior-Point Methods for Conic Optimization
圆锥优化的内点方法
- 批准号:
0513337 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
- 批准号:
249491-2002 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
- 批准号:
249491-2002 - 财政年份:2004
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Interior-point branch-and-price methods for integer programming
整数规划的内点分支价格方法
- 批准号:
249491-2002 - 财政年份:2003
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
A study on interior-point algorithms and robust optimization for Ill-conditioned optimization problems
病态优化问题的内点算法和鲁棒优化研究
- 批准号:
15510144 - 财政年份:2003
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)