Topology of Nonisolated Singularities and Scale-based Geometry
非孤立奇点拓扑和基于尺度的几何
基本信息
- 批准号:0103862
- 负责人:
- 金额:$ 8.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-15 至 2004-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0103862James N. DamonProfessor Damon's research will apply infinitesimal and stratification methods from singularity theory to investigatethe topology and deformation properties of a general class of highly nonisolated singular spaces. These spaces arise as nonlinear sections of certain natural universal varieties. For instance, geometric and deformation properties of mappings under various equivalences can be captured by such universal varieties. The structure of the tangent vector fields will be used to deduce algebraic formulae for certain fundamental topological invariants. These will be given in terms of certain natural algebraic and geometric multiplicities, measuring the singular behavior of mappings relative to associated geometric structures such as foliations Second, he will refine these ideas for questions in computer imaging by developing geometric structures associated to objects and features in images in terms of such highly singular spaces. The presence of discreteness, noise, and distortions in images require a "scale-based geometry" which is applicable to nondifferentiable functions, measures, and even distributions. Such a geometry will apply to "almost all" objects in a given type, and will yield stable geometric structures in scale space. This will allow the geometric analysis of images using functions and measures discriminating various features in images.The first part of Professor Damon's research will determine for specific types of systems of nonlinear equations, the qualitative properties of the set of solutions. These can be obtained from certain universal systems of equations. He proposes to use certain infinitesimal symmetries of the equations to deduce properties of the set of solutions in terms of algebraic invariants which reflect both properties of the universal equations and how the specific equations relate to the universal ones. Second, the research will be applied to problems in computer imaging. To objects and features in images, one may associate geometric structures capturing their properties for various imaging purposes. Such structures are defined using systems of equations as above. The presence of discreteness, noise and distortions in images interferes with identifying geometric features. The research will refine the methods described above via "scale-based" versions which introduce robust geometric structures overcoming these difficulties, which can then beused for a variety of computer imaging problems.
DMS-0103862 James N. Damon教授的研究将应用奇点理论中的无穷小和分层方法来研究一类高度非孤立的奇异空间的拓扑和变形性质。 这些空间是某些自然普遍变体的非线性部分。 例如,映射在各种等价下的几何和变形性质可以被这样的泛变量所捕获。 切向量场的结构将用于推导某些基本拓扑不变量的代数公式。 这些将给予在某些自然代数和几何多重性,测量奇异行为的映射相对于相关的几何结构,如foliations第二,他将完善这些想法的问题,在计算机成像的发展几何结构相关的对象和功能的图像方面,这种高度奇异的空间。 图像中的离散性、噪声和失真的存在需要一种适用于不可微函数、测度甚至分布的“基于尺度的几何”。 这样的几何将适用于给定类型中的“几乎所有”对象,并且将在尺度空间中产生稳定的几何结构。 这将允许图像的几何分析,使用函数和措施区分图像中的各种特征。Damon教授的研究的第一部分将确定特定类型的非线性方程组的解集的定性属性。 这些可以从某些通用的方程组得到。 他建议使用某些无穷小对称的方程推导属性的一套解决方案的代数不变量,反映了这两个属性的普遍方程和如何具体的方程涉及到普遍的。 其次,研究将应用于计算机成像问题。 对于图像中的对象和特征,人们可以将捕捉它们的属性的几何结构相关联以用于各种成像目的。 这样的结构使用如上的方程组来定义。 图像中离散性、噪声和失真的存在干扰了几何特征的识别。 该研究将通过“基于尺度”的版本改进上述方法,该版本引入了克服这些困难的鲁棒几何结构,然后可以用于各种计算机成像问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Damon其他文献
Tree Structure for Contractible Regions in ℝ3
三维欧几里得空间中可收缩区域的树结构
- DOI:
10.1007/s11263-006-0004-1 - 发表时间:
2007-01-03 - 期刊:
- 影响因子:9.300
- 作者:
James Damon - 通讯作者:
James Damon
Properties of Ridges and Cores for Two-Dimensional Images
- DOI:
10.1023/a:1008379107611 - 发表时间:
1999-03-01 - 期刊:
- 影响因子:1.500
- 作者:
James Damon - 通讯作者:
James Damon
ON THE LEGACY OF FREE DIVISORS III: FUNCTIONS AND DIVISORS ON COMPLETE INTERSECTIONS
关于自由除数 III 的遗产:完全交集上的函数和除数
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
James Damon - 通讯作者:
James Damon
Deforming generalized cylinders without self-intersection by means of a parametric center curve
- DOI:
10.1007/s41095-018-0127-7 - 发表时间:
2018-12-01 - 期刊:
- 影响因子:18.300
- 作者:
Ruibin Ma;Qingyu Zhao;Rui Wang;James Damon;Julian Rosenman;Stephen Pizer - 通讯作者:
Stephen Pizer
James Damon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Damon', 18)}}的其他基金
Geometry and Topology of Singular Structures with Applications to Computer Imaging
奇异结构的几何和拓扑及其在计算机成像中的应用
- 批准号:
1105470 - 财政年份:2011
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Geometry and Topology of Singular Structures with Applications to Imaging
奇异结构的几何和拓扑及其在成像中的应用
- 批准号:
0706941 - 财政年份:2007
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Singular Structures in Medial and Scale-Based Geometry
内侧和基于尺度的几何中的奇异结构
- 批准号:
0405947 - 财政年份:2004
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Collaborative Research: Hybrid Modeling for Design, Estimation, and Analysis
协作研究:设计、估算和分析的混合建模
- 批准号:
0310546 - 财政年份:2003
- 资助金额:
$ 8.45万 - 项目类别:
Continuing Grant
Topology of Nonisolated Singularities and the Geometry of Functions
非孤立奇点拓扑和函数几何
- 批准号:
9803467 - 财政年份:1998
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Mathematical Sciences: Topological Properties of Singularities and Solutions of Nonlinear Equations
数学科学:奇点的拓扑性质和非线性方程的解
- 批准号:
9400930 - 财政年份:1994
- 资助金额:
$ 8.45万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topological Properties of Singularities and Nonlinear Problems
数学科学:奇点和非线性问题的拓扑性质
- 批准号:
9103628 - 财政年份:1991
- 资助金额:
$ 8.45万 - 项目类别:
Continuing Grant
US-UK Cooperative Research: Topological Properties of Bifurcation Problems, Finite Map Germs, and Nonlinear Problems
美英合作研究:分岔问题的拓扑性质、有限图胚和非线性问题
- 批准号:
8814820 - 财政年份:1988
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
Mathematical Sciences: Topological Classification of Singularities and Nonlinear Problems
数学科学:奇点和非线性问题的拓扑分类
- 批准号:
8800824 - 财政年份:1988
- 资助金额:
$ 8.45万 - 项目类别:
Continuing Grant
Mathematical Sciences: Special Year in Singularities and Algebraic Geometry
数学科学:奇点和代数几何特别年
- 批准号:
8506229 - 财政年份:1985
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant
相似海外基金
Newton-type methods for nonsmooth equations with nonisolated solutions
具有非孤立解的非光滑方程的牛顿型方法
- 批准号:
290762516 - 财政年份:2016
- 资助金额:
$ 8.45万 - 项目类别:
Research Grants
Topology of Nonisolated Singularities and the Geometry of Functions
非孤立奇点拓扑和函数几何
- 批准号:
9803467 - 财政年份:1998
- 资助金额:
$ 8.45万 - 项目类别:
Standard Grant