Singular Structures in Medial and Scale-Based Geometry
内侧和基于尺度的几何中的奇异结构
基本信息
- 批准号:0405947
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0405947 James N. DamonThe PI will continue investigating two problems that superficially are unrelated. One concerns the geometry, topology and deformation properties of stratified sets and nonisolated singularities. The other involves the development of geometric methods for problems in computer imaging. These different problems benefit from the approach of singularity theory via groups of equivalences and also from the analysis of geometric and topological properties, which are consequences of transversality to Whitney stratified sets. He has applied these methods to determine local and global geometric properties of an object and its boundary from its Blum medial axis (which is a skeleton of the object used to characterize shape properties). He has also applied these methods to determine, for various notions of scale, the generic "scale-based geometry" of grayscale images. Third, he has also used these infinitesimal methods to determine the topology and geometry of a large class of highly singular complete intersections. The project will have a broader impact via its focus on the use of singularity theory as a tool for questions in computer imaging. This takes several forms including: continued joint interaction of the investigator with computer scientists at several locations, but especially at the Univ. of North Carolina; the development of tools from singularity theory, which directly apply to problems of interest in imaging; and the specific consideration, in joint work with several computer scientists, of several concrete imaging problems of current interest involving feature statistics and tensor imaging.First, the PI proposes to build on his results for medial structures to: develop concrete models in terms of topology for searchable structures for 3D objects which will be of use in 3D-imaging, to enlarge the class of allowable structures to include degeneracies, and to apply these ideas for uses in statistical properties of geometrical features for shape. Second, he will further develop methods of scale-based geometry to: determine the singular geometry in the presence of parameters; develop methods to verify generic geometric properties for feature detection; and apply the methods to tensor images. Third, he proposes to further advance the understanding of underlying geometric and topological structure of such highly singular spaces and their representations as sections of universal singularities, and their properties as Whitney stratified sets.
James N.达蒙PI将继续调查两个表面上无关的问题。 其中之一涉及分层集和非孤立奇点的几何、拓扑和变形性质。另一个涉及计算机成像问题的几何方法的发展。这些不同的问题受益于奇点理论的方法,通过组的等价,也从分析的几何和拓扑性质,这是横向的后果惠特尼分层集。 他应用这些方法来确定局部和全局的几何属性的对象和它的边界从它的Blum中轴(这是一个骨架的对象用于表征形状属性)。 他还应用这些方法来确定,为各种概念的规模,通用的“基于规模的几何”的灰度图像。第三,他还使用这些无穷小的方法来确定拓扑和几何的一大类高度奇异的完整的交叉。该项目将有一个更广泛的影响,通过它的重点是使用奇点理论作为工具的问题,在计算机成像。这采取了几种形式,包括:继续联合互动的调查人员与计算机科学家在几个地点,但特别是在大学的北卡罗来纳州;工具的发展,从奇点理论,这直接适用于问题的兴趣成像;具体的考虑,在与几位计算机科学家的联合工作中,当前感兴趣的几个具体成像问题,涉及特征统计和张量成像。首先,PI建议建立在他的中间结构结果的基础上:发展具体的模型,在拓扑结构方面的可搜索的结构的3D对象,这将是在3D成像中使用,扩大类允许的结构,包括退化,并应用这些想法,用于统计性质的几何特征的形状。其次,他将进一步开发基于尺度的几何方法:确定参数存在时的奇异几何;开发验证特征检测的通用几何属性的方法;并将这些方法应用于张量图像。第三,他建议进一步推进对这种高度奇异空间的基本几何和拓扑结构的理解,以及它们作为泛奇点的部分的表示,以及它们作为惠特尼分层集的性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Damon其他文献
Tree Structure for Contractible Regions in ℝ3
三维欧几里得空间中可收缩区域的树结构
- DOI:
10.1007/s11263-006-0004-1 - 发表时间:
2007-01-03 - 期刊:
- 影响因子:9.300
- 作者:
James Damon - 通讯作者:
James Damon
Properties of Ridges and Cores for Two-Dimensional Images
- DOI:
10.1023/a:1008379107611 - 发表时间:
1999-03-01 - 期刊:
- 影响因子:1.500
- 作者:
James Damon - 通讯作者:
James Damon
ON THE LEGACY OF FREE DIVISORS III: FUNCTIONS AND DIVISORS ON COMPLETE INTERSECTIONS
关于自由除数 III 的遗产:完全交集上的函数和除数
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
James Damon - 通讯作者:
James Damon
Deforming generalized cylinders without self-intersection by means of a parametric center curve
- DOI:
10.1007/s41095-018-0127-7 - 发表时间:
2018-12-01 - 期刊:
- 影响因子:18.300
- 作者:
Ruibin Ma;Qingyu Zhao;Rui Wang;James Damon;Julian Rosenman;Stephen Pizer - 通讯作者:
Stephen Pizer
James Damon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Damon', 18)}}的其他基金
Geometry and Topology of Singular Structures with Applications to Computer Imaging
奇异结构的几何和拓扑及其在计算机成像中的应用
- 批准号:
1105470 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Geometry and Topology of Singular Structures with Applications to Imaging
奇异结构的几何和拓扑及其在成像中的应用
- 批准号:
0706941 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Hybrid Modeling for Design, Estimation, and Analysis
协作研究:设计、估算和分析的混合建模
- 批准号:
0310546 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Topology of Nonisolated Singularities and Scale-based Geometry
非孤立奇点拓扑和基于尺度的几何
- 批准号:
0103862 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Topology of Nonisolated Singularities and the Geometry of Functions
非孤立奇点拓扑和函数几何
- 批准号:
9803467 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Topological Properties of Singularities and Solutions of Nonlinear Equations
数学科学:奇点的拓扑性质和非线性方程的解
- 批准号:
9400930 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Topological Properties of Singularities and Nonlinear Problems
数学科学:奇点和非线性问题的拓扑性质
- 批准号:
9103628 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
US-UK Cooperative Research: Topological Properties of Bifurcation Problems, Finite Map Germs, and Nonlinear Problems
美英合作研究:分岔问题的拓扑性质、有限图胚和非线性问题
- 批准号:
8814820 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Topological Classification of Singularities and Nonlinear Problems
数学科学:奇点和非线性问题的拓扑分类
- 批准号:
8800824 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Special Year in Singularities and Algebraic Geometry
数学科学:奇点和代数几何特别年
- 批准号:
8506229 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Cellular and network dynamics of medial temporal lobe memory structures
内侧颞叶记忆结构的细胞和网络动力学
- 批准号:
249861-2011 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Medial temporal lobe structures underlying sensory information processing during memory retrieval (B09*)
记忆检索过程中感觉信息处理的内侧颞叶结构 (B09*)
- 批准号:
258663419 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Collaborative Research Centres
Cellular and network dynamics of medial temporal lobe memory structures
内侧颞叶记忆结构的细胞和网络动力学
- 批准号:
249861-2011 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Cellular and network dynamics of medial temporal lobe memory structures
内侧颞叶记忆结构的细胞和网络动力学
- 批准号:
249861-2011 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Cellular and network dynamics of medial temporal lobe memory structures
内侧颞叶记忆结构的细胞和网络动力学
- 批准号:
249861-2011 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Cellular and network dynamics of medial temporal lobe memory structures
内侧颞叶记忆结构的细胞和网络动力学
- 批准号:
249861-2011 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Cellular and Network dynamics of medial temporal lobe memory structures
内侧颞叶记忆结构的细胞和网络动力学
- 批准号:
249861-2006 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Cellular and Network dynamics of medial temporal lobe memory structures
内侧颞叶记忆结构的细胞和网络动力学
- 批准号:
249861-2006 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Cellular and Network dynamics of medial temporal lobe memory structures
内侧颞叶记忆结构的细胞和网络动力学
- 批准号:
249861-2006 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Cellular and Network dynamics of medial temporal lobe memory structures
内侧颞叶记忆结构的细胞和网络动力学
- 批准号:
249861-2006 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual