Isoperimetry, Concentration of Measure and Related Sobolev-Type Inequalities in High Dimensional Probability Theory

高维概率论中的等周、测度集中及相关索博列夫型不等式

基本信息

  • 批准号:
    0103929
  • 负责人:
  • 金额:
    $ 10.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-15 至 2004-10-31
  • 项目状态:
    已结题

项目摘要

Essential properties of multidimensional probability distributions often include geometric and analytic characteristics related to global behavior of smooth functionals in a growing number of variables. This research focuses on various concentration phenomena for different classes of probability measures in spaces of high dimension. The classes of product measures, uniform distributions over convex bodies, or logarithmically concave measures are good examples with a number of challenging problems. The study of the role of the dimension as the main parameter of a distribution is placed in the center of the research. Many important properties of stochastic processes postulate possible behavior of sample trajectories and often refer to distributions of various functionals. Obtaining essential information on the process requires the study of multidimensional distributions and leads to deep mathematical problems which are also interesting in themselves from the point view of the natural development of mathematical sciences. This research focuses on the study of global properties of stochastic processes and on how they relate to different objects from analysis, geometry and statistics.
多维概率分布的基本性质通常包括与越来越多的变量中的光滑泛函的全局行为相关的几何和分析特征。本文主要研究高维空间中不同类型概率测度的各种集中现象。乘积测度类、凸体上的均匀分布类或几何凹测度类是具有许多挑战性问题的很好例子。作为分布的主要参数的维数的作用的研究被放置在研究的中心。随机过程的许多重要性质假设样本轨迹的可能行为,并且通常涉及各种泛函的分布。获得基本信息的过程需要研究多维分布,并导致深层次的数学问题,这也是有趣的本身从角度来看,自然发展的数学科学。本研究的重点是研究随机过程的全局性质,以及它们如何与分析,几何和统计等不同对象相关联。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergey Bobkov其他文献

Sergey Bobkov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergey Bobkov', 18)}}的其他基金

New High Dimensional Phenomena and Related Questions
新的高维现象及相关问题
  • 批准号:
    2154001
  • 财政年份:
    2022
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant
High-Dimensional Phenomena, Limit Theorems, and Applications
高维现象、极限定理及应用
  • 批准号:
    1855575
  • 财政年份:
    2019
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant
New High Dimensional Phenomena and Applications
新的高维现象和应用
  • 批准号:
    1612961
  • 财政年份:
    2016
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant
Stochastic processes and high dimensional probability distributions, Russia, Summer 2014
随机过程和高维概率分布,俄罗斯,2014 年夏季
  • 批准号:
    1419498
  • 财政年份:
    2014
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
Geometric and information-theoretic aspects of high-dimensional phenomena
高维现象的几何和信息论方面
  • 批准号:
    1106530
  • 财政年份:
    2011
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant
Concentration Phenomena In High Dimensions and Applications to Randomized Models
高维集中现象及其在随机模型中的应用
  • 批准号:
    0706866
  • 财政年份:
    2007
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant
Concentration and Related Probabilistic Phenomena in High Dimensions
高维中的浓度和相关概率现象
  • 批准号:
    0405587
  • 财政年份:
    2004
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: ATMARS, an AuTonomous underwater vehicle with ancillary optics to measure MARine Snow size, concentration, and descent rate.
EAGER:ATMARS,一种带有辅助光学器件的自主水下航行器,用于测量海洋雪的大小、浓度和下降率。
  • 批准号:
    2311638
  • 财政年份:
    2023
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
Concentration of measure on quantum states
测量集中于量子态
  • 批准号:
    RGPIN-2020-05022
  • 财政年份:
    2022
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Discovery Grants Program - Individual
Concentration of measure on quantum states
测量集中于量子态
  • 批准号:
    RGPIN-2020-05022
  • 财政年份:
    2021
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Discovery Grants Program - Individual
Concentration of measure on quantum states
测量集中于量子态
  • 批准号:
    DGECR-2020-00278
  • 财政年份:
    2020
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Discovery Launch Supplement
Concentration of measure on quantum states
测量集中于量子态
  • 批准号:
    RGPIN-2020-05022
  • 财政年份:
    2020
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Discovery Grants Program - Individual
Curvature-dimension condition and measure concentration on generalized metric measure spaces
广义度量测度空间上的曲率维数条件和测度集中
  • 批准号:
    19K14532
  • 财政年份:
    2019
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Creation of new agents for BNCT that enable to measure boron concentration at tumor site
开发新的 BNCT 试剂,能够测量肿瘤部位的硼浓度
  • 批准号:
    19K05735
  • 财政年份:
    2019
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Measure concentration and information distances (A04)
测量浓度和信息距离(A04)
  • 批准号:
    366760977
  • 财政年份:
    2017
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Collaborative Research Centres
Application of random matrices and measure concentration to quantum communication theory
随机矩阵和测量浓度在量子通信理论中的应用
  • 批准号:
    16K00005
  • 财政年份:
    2016
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Phage-based assay to measure daptomycin concentration in biological fluids
基于噬菌体的测定生物体液中达托霉素浓度
  • 批准号:
    9138530
  • 财政年份:
    2015
  • 资助金额:
    $ 10.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了