High-Dimensional Phenomena, Limit Theorems, and Applications

高维现象、极限定理及应用

基本信息

  • 批准号:
    1855575
  • 负责人:
  • 金额:
    $ 24.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The project's research covers several topics in mathematics and is focused on the study of probabilistic, geometric, and information-theoretic aspects of high dimensional phenomena, including concentration of measure and asymptotic behavior of various functions of a growing number of random variables. The concentration tools are the subject of many exciting developments, since they help explore most essential properties of general complex systems where randomness of their numerous small parts results in a stable limit behavior. Being connected with challenging mathematical problems, this research area has proved to be very useful for applications in other fields such as statistics, information theory, computer science, machine learning. One of the objectives of the project is to clarify the role of growing dimension as a unifying source in high-dimensional models and, in particular, its influence on the entire evolution in time as opposed to local rules. Proposed research will have a broader impact by creating new connections between different mathematical fields and providing them with powerful interdisciplinary tools. The project will also have an important impact on educating in mathematical sciences. More specifically, the investigator intends to develop new advanced concentration tools for spaces with sufficiently many symmetries including Grassmanian manifolds. It is planned to apply them in the study of global properties of multidimensional projections for log-concave and more general hyperbolic measures, that are related to the thin shell (variance) problem and the K-L-S conjecture of Kannan, Lovasz and Simonovits. Another sort of applications deals with randomized models of summation for dependent data under correlation conditions. Part of the project is devoted to limit theorems and asymptotic expansions in the central limit theorem for information-theoretic distances such as the relative entropy (Kullback-Leibler distance) and relative Fisher information, which will be accompanied by proper Berry-Esseen bounds. The project also deals with Edgeworth-type expansions and informational bounds in the problem of Poisson approximation. The proposed themes refer either to long-standing open problems or to challenging questions related to recent developments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究涵盖了数学中的几个主题,并专注于研究高维现象的概率、几何和信息理论方面,包括测量的集中度和越来越多的随机变量的各种函数的渐近行为。集中工具是许多令人兴奋的发展的主题,因为它们有助于探索一般复杂系统的最基本属性,在这些系统中,其众多小部分的随机性导致稳定的极限行为。这一研究领域与具有挑战性的数学问题相联系,在统计学、信息论、计算机科学、机器学习等领域的应用被证明是非常有用的。该项目的目标之一是澄清不断增长的维度在高维度模型中作为统一来源的作用,特别是它对整个时间演变的影响,而不是当地规则。拟议的研究将产生更广泛的影响,在不同的数学领域之间建立新的联系,并为它们提供强大的跨学科工具。该项目还将对数学科学教育产生重要影响。更具体地说,研究者打算为具有足够多对称性的空间(包括Grassmanian流形)开发新的高级集中工具。计划将它们应用于研究与薄壳(方差)问题和Kannan,Lovasz和Simonovits的K-L-S猜想有关的对数凹和更一般的双曲测度的多维投影的全局性质。另一类应用涉及相关条件下相关数据的随机化求和模型。该项目的一部分将致力于信息论距离的中心极限定理中的极限定理和渐近展开,例如相对熵(Kullback-Leibler距离)和相对Fisher信息,它们将伴随着适当的Berry-Esseen界。该项目还讨论了泊松近似问题的Edgeworth展开和信息界。建议的主题涉及长期悬而未决的问题或与最近发展相关的挑战性问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transport inequalities on Euclidean spaces for non-Euclidean metrics
非欧几里得度量的欧几里得空间上的传输不等式
Asymptotic behavior of Renyi entropy in the central limit theorem
中心极限定理中Renyi熵的渐近行为
  • DOI:
    10.1007/978-3-030-26391-1_11
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bobkov, S. G.;Marsiglietti, A.
  • 通讯作者:
    Marsiglietti, A.
Local limit theorems for smoothed Bernoulli and other convolutions
平滑伯努利和其他卷积的局部极限定理
Two-sided bounds for PDF’s maximum of a sum of weighted chi-square variables
PDF 加权卡方变量之和的最大值的两侧界限
  • DOI:
    10.1007/978-3-030-83266-7_13
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bobkov, S. G.;Naumov, A. A.;Ulyanov, V. V.
  • 通讯作者:
    Ulyanov, V. V.
Concentration functions and entropy bounds for discrete log-concave distributions
离散对数凹分布的浓度函数和熵界
  • DOI:
    10.1017/s096354832100016x
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Bobkov, S. G.;Marsiglietti, A.;Melbourne, J.
  • 通讯作者:
    Melbourne, J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergey Bobkov其他文献

Sergey Bobkov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergey Bobkov', 18)}}的其他基金

New High Dimensional Phenomena and Related Questions
新的高维现象及相关问题
  • 批准号:
    2154001
  • 财政年份:
    2022
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
New High Dimensional Phenomena and Applications
新的高维现象和应用
  • 批准号:
    1612961
  • 财政年份:
    2016
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
Stochastic processes and high dimensional probability distributions, Russia, Summer 2014
随机过程和高维概率分布,俄罗斯,2014 年夏季
  • 批准号:
    1419498
  • 财政年份:
    2014
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Geometric and information-theoretic aspects of high-dimensional phenomena
高维现象的几何和信息论方面
  • 批准号:
    1106530
  • 财政年份:
    2011
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
Concentration Phenomena In High Dimensions and Applications to Randomized Models
高维集中现象及其在随机模型中的应用
  • 批准号:
    0706866
  • 财政年份:
    2007
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
Concentration and Related Probabilistic Phenomena in High Dimensions
高维中的浓度和相关概率现象
  • 批准号:
    0405587
  • 财政年份:
    2004
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
Isoperimetry, Concentration of Measure and Related Sobolev-Type Inequalities in High Dimensional Probability Theory
高维概率论中的等周、测度集中及相关索博列夫型不等式
  • 批准号:
    0103929
  • 财政年份:
    2001
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant

相似海外基金

SHINE: The Evolution of Coronal Dimmings and Their Relationship to Eruptive Phenomena
闪耀:日冕变暗的演变及其与喷发现象的关系
  • 批准号:
    2400789
  • 财政年份:
    2025
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
  • 批准号:
    2339309
  • 财政年份:
    2024
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Research Grant
Persistent Optical Phenomena in Oxide Semiconductors
氧化物半导体中的持久光学现象
  • 批准号:
    2335744
  • 财政年份:
    2024
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
Understanding quantum emergent phenomena in Shastry-Sutherland model systems
了解 Shastry-Sutherland 模型系统中的量子涌现现象
  • 批准号:
    2327555
  • 财政年份:
    2024
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Standard Grant
CAREER: Transport Phenomena and the Uptake of Foreign Species during Crystal Growth
职业:晶体生长过程中的传输现象和外来物质的吸收
  • 批准号:
    2339644
  • 财政年份:
    2024
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Photo-thermoelectric Phenomena in Bulk and Nanomaterials for Better Optical Sensing
职业:了解块状和纳米材料中的光热电现象以实现更好的光学传感
  • 批准号:
    2340728
  • 财政年份:
    2024
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Continuing Grant
Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
  • 批准号:
    EP/V048333/2
  • 财政年份:
    2024
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Research Grant
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
  • 批准号:
    EP/Y032659/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.88万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了