Shock Waves in Macroscopic and Microscopic Models

宏观和微观模型中的冲击波

基本信息

  • 批准号:
    0104019
  • 负责人:
  • 金额:
    $ 17.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-15 至 2005-01-31
  • 项目状态:
    已结题

项目摘要

0104019LiuIt is proposed to study the shock wave theory for conservation laws and the Boltzmann equation in the kinetic theory. Shock waves occurs in many natural phenomena, such as supersonic flight, sonar wind, earthquakes and hurricanes. There is now a satisfactory mathematical theory for the inviscid plane motion. It is planned to study the multi-dimensional gas motion as well as the dissipation effects. The Boltzmann equation models the gas motion on the microscopic level. This is necessary for important physical phenomena such as the thermal effects of the boundary on the gas motion. The nonlinear waves and the boundary effects for the Boltzmann equation will be studied.The Euler equations and Navier-Stokes equations for the gas dynamics are considered. The project will include the study of the nonlinear stability of shock waves for these and more general systems of hyperbolic-parabolic conservation laws. The approach combines the pointwise estimates and the energy estimates and is based on the new understanding of the structure of the Green's function for the equations linearized about the shock. For the Boltzmann equation, the positivity of Boltzmann shocks has been shown and the boundary effects such as the thermal creep are being studied. These are based on the new macro-micro decomposition of the Boltzmann equation and time-asymptotic analysis.
[00:40 . 19]提出对激波理论进行守恒定律和运动理论中的玻尔兹曼方程的研究。冲击波出现在许多自然现象中,如超音速飞行、声纳风、地震和飓风。对于无粘平面运动,现在有了一个令人满意的数学理论。计划研究气体的多维运动及其耗散效应。玻尔兹曼方程在微观水平上模拟气体运动。这对于诸如边界对气体运动的热效应等重要的物理现象是必要的。本文将研究玻尔兹曼方程的非线性波和边界效应。考虑了气体动力学的Euler方程和Navier-Stokes方程。该项目将包括研究这些和更一般的双曲-抛物守恒律系统的激波的非线性稳定性。该方法结合了点估计和能量估计,并基于对激波线性化方程的格林函数结构的新理解。对于玻尔兹曼方程,证明了玻尔兹曼激波的正性,并研究了热蠕变等边界效应。这些都是基于玻尔兹曼方程的新的宏观-微观分解和时间渐近分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tai-Ping Liu其他文献

Shock waves for compressible navier‐stokes equations are stable
The entropy condition and the admissibility of shocks
Initial-boundary value problems for gas dynamics
Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations
Weak Solutions of General Systems of Hyperbolic Conservation Laws

Tai-Ping Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tai-Ping Liu', 18)}}的其他基金

Boltzmann Equation and Multi-Dimensional Shock Interactions in Gas Dynamics
气体动力学中的玻尔兹曼方程和多维冲击相互作用
  • 批准号:
    0709248
  • 财政年份:
    2007
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Conference: General Relativity and Shock Wave Theory
会议:广义相对论与冲击波理论
  • 批准号:
    0607841
  • 财政年份:
    2006
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
Kinetics Theory and Multidimensional Gas Flow
动力学理论和多维气体流动
  • 批准号:
    0406089
  • 财政年份:
    2004
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
  • 批准号:
    0244383
  • 财政年份:
    2003
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
Shock Wave Theory
冲击波理论
  • 批准号:
    9803323
  • 财政年份:
    1998
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Study of Nonlinear Waves in Compressible Flows and Mechanics
数学科学:可压缩流动和力学中的非线性波研究
  • 批准号:
    9623025
  • 财政年份:
    1996
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Waves in Mechanics and Fluids
数学科学:力学和流体中的非线性波
  • 批准号:
    9216275
  • 财政年份:
    1993
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Partial Differential Equations and Fluid Dynamics and Mechanics
数学科学:非线性偏微分方程和流体动力学和力学
  • 批准号:
    9121529
  • 财政年份:
    1991
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
U.S.-China Cooperative Research (Math): Shock Wave Theory
中美合作研究(数学):冲击波理论
  • 批准号:
    9113200
  • 财政年份:
    1991
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
U.S.-French Advanced Research Workshop on Nonlinear Hyperbolic Conservation Laws, January 12-16, 1986, Saint Antheme, France
美法非线性双曲守恒定律高级研究研讨会,1986 年 1 月 12-16 日,法国圣安泰姆
  • 批准号:
    8518266
  • 财政年份:
    1986
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
  • 批准号:
    2346964
  • 财政年份:
    2024
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
  • 批准号:
    2401066
  • 财政年份:
    2024
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
Probing ultralight bosons with black holes and gravitational waves
用黑洞和引力波探测超轻玻色子
  • 批准号:
    DE240100206
  • 财政年份:
    2024
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
  • 批准号:
    2247396
  • 财政年份:
    2024
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Standard Grant
Hilbert's Sixth Problem: From Particles to Waves
希尔伯特第六个问题:从粒子到波
  • 批准号:
    2350242
  • 财政年份:
    2024
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
  • 批准号:
    2335083
  • 财政年份:
    2024
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
  • 批准号:
    2335082
  • 财政年份:
    2024
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
Continuing Measurements of Water Vapor, Clouds, Aerosol, and Waves Above, and Across, the Tropical Tropopause Layer with in Situ Instruments on Circum-Tropical Isopycnic Balloons
使用环热带等密度气球上的现场仪器持续测量热带对流层顶层上方和上方的水蒸气、云、气溶胶和波浪
  • 批准号:
    2336110
  • 财政年份:
    2024
  • 资助金额:
    $ 17.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了