Shock Wave Theory
冲击波理论
基本信息
- 批准号:9803323
- 负责人:
- 金额:$ 22.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-9803323 Tai-Ping Liu We propose to study two fundamental questions for general systems of hyperbolic conservation laws: The first is the well-posedness problem. This is done with Tong Yang. For this, we already constructed a nonlinear functional for the two conservation laws and are in the process of doing so for the general systems. The second problem is to study multi-dimensional gas flows. Lien and the author have succeeded in showing that three-dimensional self-similar gas flow past a cone is nonlinearly stable. We are generalizing the new approach of superpositioning local self-similar flows to other problems. We expect this approach to yield new qualitative information on nonlinear stability and instability of multi-dimensional gas flows. Our second project is to study the viscous conservation laws. With Zeng, we are in the process of studying the stability of nonlinear waves for hyperbolic-parabolic systems such as the compressible Navier-Stokes equations. Other problems in combustion and MHD, and numerical analysis of shock calculations are being considered. Of particular interest is the role of dissipative parameters on the structure and stability of nonlinear waves. The pointwise approach the author introduced is effective for these purposes. The author plans to study basic questions concerning the invisicd and viscous solutions for gas dynamics and mechanics. One of the fundamental questions concerns the validity of the Euler equations for the gas dynamics. The equations were derived by Euler in the eighteenth century. Only until recently the author and his collaborator are able to show that the equations are mathematically valid in that small errors in the data yield small errors in the solutions. This is of obvious importance in the applications because there is always small error either in the experimental data or numerical computations. Other problems of interest to the author include the sensitive role of di ssipation parameters. In combustion, magneto-hydrodynamics, nonlinear elasticity and other continuum physics, dissipative mechanisms, such as viscosity, heat conductivity, and species diffusions are important. The geometric properties and stability of the nonlinear waves may depend sensitively on these parameters. The author has recently introduced a pointwise approach, which is effective in studying the nonlinear interactions of waves. The role of dissipation parameters are being studied using the basic conservation laws in physics.
我们提出研究一般双曲守恒律系统的两个基本问题:第一个是适定性问题。这是和童阳一起做的。为此,我们已经为这两个守恒定律构造了一个非线性泛函,并且正在为一般系统这样做。第二个问题是研究多维气体流动。Lien和作者已经成功地证明了三维自相似气体流过锥体是非线性稳定的。我们将局部自相似流叠加的新方法推广到其他问题。我们期望这种方法能够产生关于多维气体流动的非线性稳定性和不稳定性的新的定性信息。我们的第二个课题是研究粘性守恒定律。与Zeng一起,我们正在研究双曲抛物系统的非线性波的稳定性,如可压缩的Navier-Stokes方程。燃烧和MHD的其他问题,以及激波计算的数值分析也在考虑之中。特别令人感兴趣的是耗散参数对非线性波的结构和稳定性的作用。作者介绍的点式方法对这些目的是有效的。作者计划研究气体动力学和力学的无形解和粘性解的基本问题。欧拉方程在气体动力学中的有效性是最基本的问题之一。这些方程是欧拉在18世纪推导出来的。直到最近,作者和他的合作者才能够证明这些方程在数学上是有效的,因为数据中的小误差会导致解的小误差。这在实际应用中具有明显的重要性,因为无论是实验数据还是数值计算,都存在很小的误差。作者感兴趣的其他问题包括耗散参数的敏感作用。在燃烧、磁流体力学、非线性弹性和其他连续介质物理中,耗散机制,如粘度、导热性和物质扩散是重要的。非线性波的几何性质和稳定性可能敏感地依赖于这些参数。作者最近介绍了一种有效地研究波的非线性相互作用的逐点方法。利用物理学中的基本守恒定律研究了耗散参数的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tai-Ping Liu其他文献
Shock waves for compressible navier‐stokes equations are stable
- DOI:
10.1002/cpa.3160390502 - 发表时间:
1986-09 - 期刊:
- 影响因子:3
- 作者:
Tai-Ping Liu - 通讯作者:
Tai-Ping Liu
The entropy condition and the admissibility of shocks
- DOI:
10.1016/0022-247x(76)90146-3 - 发表时间:
1976 - 期刊:
- 影响因子:1.3
- 作者:
Tai-Ping Liu - 通讯作者:
Tai-Ping Liu
Initial-boundary value problems for gas dynamics
- DOI:
10.1007/bf00280095 - 发表时间:
1977-06 - 期刊:
- 影响因子:2.5
- 作者:
Tai-Ping Liu - 通讯作者:
Tai-Ping Liu
Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations
- DOI:
10.1016/0022-0396(79)90082-2 - 发表时间:
1979-07 - 期刊:
- 影响因子:2.4
- 作者:
Tai-Ping Liu - 通讯作者:
Tai-Ping Liu
Weak Solutions of General Systems of Hyperbolic Conservation Laws
- DOI:
10.1007/s00220-002-0705-4 - 发表时间:
2002-10-01 - 期刊:
- 影响因子:2.600
- 作者:
Tai-Ping Liu;Tong Yang - 通讯作者:
Tong Yang
Tai-Ping Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tai-Ping Liu', 18)}}的其他基金
Boltzmann Equation and Multi-Dimensional Shock Interactions in Gas Dynamics
气体动力学中的玻尔兹曼方程和多维冲击相互作用
- 批准号:
0709248 - 财政年份:2007
- 资助金额:
$ 22.6万 - 项目类别:
Continuing Grant
Conference: General Relativity and Shock Wave Theory
会议:广义相对论与冲击波理论
- 批准号:
0607841 - 财政年份:2006
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Kinetics Theory and Multidimensional Gas Flow
动力学理论和多维气体流动
- 批准号:
0406089 - 财政年份:2004
- 资助金额:
$ 22.6万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244383 - 财政年份:2003
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Shock Waves in Macroscopic and Microscopic Models
宏观和微观模型中的冲击波
- 批准号:
0104019 - 财政年份:2001
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Study of Nonlinear Waves in Compressible Flows and Mechanics
数学科学:可压缩流动和力学中的非线性波研究
- 批准号:
9623025 - 财政年份:1996
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Waves in Mechanics and Fluids
数学科学:力学和流体中的非线性波
- 批准号:
9216275 - 财政年份:1993
- 资助金额:
$ 22.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Partial Differential Equations and Fluid Dynamics and Mechanics
数学科学:非线性偏微分方程和流体动力学和力学
- 批准号:
9121529 - 财政年份:1991
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
U.S.-China Cooperative Research (Math): Shock Wave Theory
中美合作研究(数学):冲击波理论
- 批准号:
9113200 - 财政年份:1991
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
U.S.-French Advanced Research Workshop on Nonlinear Hyperbolic Conservation Laws, January 12-16, 1986, Saint Antheme, France
美法非线性双曲守恒定律高级研究研讨会,1986 年 1 月 12-16 日,法国圣安泰姆
- 批准号:
8518266 - 财政年份:1986
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
相似国自然基金
WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
- 批准号:32300748
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
细胞骨架调节蛋白WAVE2维护免疫耐受及抑制自身免疫的机制研究
- 批准号:32270940
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
WAVE1/KMT2A甲基化作用调控上皮性卵巢癌增殖转移的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
WAVE1 调控脓毒症免疫代谢反应的分子机制
- 批准号:2021JJ31110
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用光学系统研究空间Rogue Wave的控制和预测
- 批准号:12004282
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
WASp家族Verprolin同源蛋白WAVE2调节T细胞免疫稳态和抗原特异性免疫应答的机制研究
- 批准号:31970841
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
复微分方程的亚纯解和偏微分方程的rogue wave解
- 批准号:11701382
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
植物SCAR/WAVE复合体与线粒体协同调节的自噬机制及其对柑橘果实品质的影响
- 批准号:31772281
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
WAVE2调控SATB1促进Tfh细胞分化在系统性红斑狼疮发病机制中的研究
- 批准号:81673058
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Investigation into the distribution of frictional strength on the plate interface and the large-thrust earthquake occurrence by seismic wave theory
地震波理论研究板块界面摩擦力分布及大推力地震发生
- 批准号:
23H01271 - 财政年份:2023
- 资助金额:
$ 22.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
- 批准号:
2307395 - 财政年份:2023
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Coherent radio and x-ray precursor transients to gravitational wave events: Simulations in general relativity and kinetic theory
合作研究:WoU-MMA:引力波事件的相干射电和 X 射线前兆瞬变:广义相对论和动力学理论的模拟
- 批准号:
2307394 - 财政年份:2023
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
- 批准号:
DE230101165 - 财政年份:2023
- 资助金额:
$ 22.6万 - 项目类别:
Discovery Early Career Researcher Award
Gravitational Wave Modeling Using Time-Domain Black Hole Perturbation Theory
使用时域黑洞微扰理论进行引力波建模
- 批准号:
2307236 - 财政年份:2023
- 资助金额:
$ 22.6万 - 项目类别:
Continuing Grant
Linking Theory to Experiment: Using Holographic Theories of Quantum Gravity to Explain Gravitational Wave Echoes
将理论与实验联系起来:利用量子引力全息理论来解释引力波回波
- 批准号:
547745-2020 - 财政年份:2022
- 资助金额:
$ 22.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Semiclassical theory of wave packet dynamics in curved spacetime and its application to nonlinear responses
弯曲时空波包动力学的半经典理论及其在非线性响应中的应用
- 批准号:
22K03498 - 财政年份:2022
- 资助金额:
$ 22.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real-time wave-function theory of multielectron dynamics in solids under intense laser fields
强激光场下固体多电子动力学的实时波函数理论
- 批准号:
22K18982 - 财政年份:2022
- 资助金额:
$ 22.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Mathematical and numerical analysis for quantum wave equations: from theory to applications
量子波动方程的数学和数值分析:从理论到应用
- 批准号:
RGPIN-2018-05321 - 财政年份:2022
- 资助金额:
$ 22.6万 - 项目类别:
Discovery Grants Program - Individual
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
- 批准号:
2204322 - 财政年份:2022
- 资助金额:
$ 22.6万 - 项目类别:
Continuing Grant