Some Theoretical and Applied Inverse Problems

一些理论和应用反问题

基本信息

  • 批准号:
    0104029
  • 负责人:
  • 金额:
    $ 7.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2004-08-31
  • 项目状态:
    已结题

项目摘要

This project is dedicated to the study of uniqueness and stability insome important inverse problems, in particular to identification of diffusion coefficientsand the speed of propagation for scalar partial differential equations and (Maxwell andelasticity)systems. Tools will be new Carleman type estimates andinteraction between control theory and inverse problems. Also potentialtheory is to be utilized in the further study of inverse gravimetry andvorticity problems. In case of many boundary measurements the effort will bemade to resolve the fundamental uniqueness question in the inverseconductivity problem with the data on a part of the boundary by usinglocalized solutions of elliptic equations recently constructed by Greenleafand Uhlmann. The PI will try to find cases of increased stability in inverseproblems, in particular obtaining Lipschitz conditional stability estimates forrecovery of nonlinear (space independent) elliptic and parabolic equationsfrom boundary measurements and quantifying increased stability inprospecting by stationary waves with higher frequency. Applications of theoretical results will be in identification of volatility in options markets. We expect to develop a very efficient and reliable algorithm based on the modeling of volatility. This problem is of fundamental importance for prediction of options markets and evaluation of economical stability from current market data. Another expected application is recovery of the fundamental physical relations (in chemical equations, heat conduction) from experimental data. This problem is of growing importance for contemporary engineering due to the discovery of new materials and the use of high temperatures.The theory of inverse gravimetry combined with available models of vorticity is expected to achieve progress in evaluation of turbulence (e.g. past aircrafts) from distant measurements of pressure. This problem has important implications for increasing capability of large airports. The project will involve graduate students and stimulate their interest in mathematical problems of practical importance.
这个项目致力于研究一些重要的反问题的唯一性和稳定性,特别是标量偏微分方程组和(Maxwell和弹性)系统的扩散系数的辨识和传播速度。工具将是新的Carleman类型估计以及控制理论和反问题之间的相互作用。位势理论也可用于重力和涡度反问题的进一步研究。在边界测量较多的情况下,利用Greenleaf和Uhlmann新近构造的椭圆型方程的局部解来解决部分边界上数据的逆导性问题中的基本唯一性问题。PI将试图发现反问题中稳定性增加的情况,特别是从边界测量中恢复非线性(空间无关)椭圆和抛物型方程的Lipschitz条件稳定性估计,并量化高频驻波勘探中增加的稳定性。理论结果将应用于识别期权市场的波动性。我们期望开发一种基于波动率建模的非常高效和可靠的算法。这一问题对于从当前市场数据预测期权市场和评估经济稳定性具有重要意义。另一个预期的应用是从实验数据中恢复基本的物理关系(化学方程式、热传导)。由于新材料的发现和高温的使用,这个问题对当代工程越来越重要。逆重力理论与现有的涡度模型相结合,有望在从远距离测量压力来评估湍流(如过去的飞机)方面取得进展。这个问题对提高大型机场的能力具有重要意义。该项目将吸引研究生参与,并激发他们对具有实际意义的数学问题的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor Isakov其他文献

Increasing stability of the inverse boundary value problem for the Schroedinger equation
提高薛定谔方程反边值问题的稳定性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victor Isakov;Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang
  • 通讯作者:
    Jenn-Nan Wang
On the summability of divergent power series solutions of certain first-order linear PDEs
关于某些一阶线性偏微分方程的发散幂级数解的可和性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victor Isakov;Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang;大野 貴雄;T.Miyao;日比野 正樹
  • 通讯作者:
    日比野 正樹
Increasing stability in the inverse source problem with many frequencies
提高多频率逆源问题的稳定性
  • DOI:
    10.1016/j.jde.2015.11.030
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Jin Cheng;Victor Isakov;Shuai Lu
  • 通讯作者:
    Shuai Lu
Extremal problems for close-to-convex functions
接近凸函数的极值问题
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victor Isakov;Kyoungsun Kim and Gen Nakamura;阿部知行;Toshiyuki Sugawa
  • 通讯作者:
    Toshiyuki Sugawa
Inverse problems for partial differential equations
  • DOI:
    10.1007/978-1-4899-0030-2
  • 发表时间:
    1997-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victor Isakov
  • 通讯作者:
    Victor Isakov

Victor Isakov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victor Isakov', 18)}}的其他基金

Some inverse problems: increasing stability and drift-diffusion models
一些逆问题:增加稳定性和漂移扩散模型
  • 批准号:
    1514886
  • 财政年份:
    2015
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Some Inverse Problems for Obstacles and Drift-Diffusion and Elasticity Systems
障碍物、漂移扩散和弹性系统的一些反问题
  • 批准号:
    1008902
  • 财政年份:
    2010
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
Some inverse problems in elasticity, option pricing, semiconductors, and scattering theory.
弹性、期权定价、半导体和散射理论中的一些反问题。
  • 批准号:
    0707734
  • 财政年份:
    2007
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
Some Inverse Problems in Elasticity, Financial Markets, and Scattering Theory
弹性、金融市场和散射理论中的一些反问题
  • 批准号:
    0405976
  • 财政年份:
    2004
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
Mathematical Methods for Nearfield Acoustical Holography
近场声全息的数学方法
  • 批准号:
    9803816
  • 财政年份:
    1998
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Theory and Applications of Some Inverse Problems in PDE
偏微分方程中一些反问题的理论与应用
  • 批准号:
    9803397
  • 财政年份:
    1998
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Some Inverse Problems in PDE
数学科学:偏微分方程中的一些反问题
  • 批准号:
    9501510
  • 财政年份:
    1995
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Global Uniqueness and Stability in Inverse Problems for PDE
数学科学:偏微分方程反问题的全局唯一性和稳定性
  • 批准号:
    9101421
  • 财政年份:
    1991
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Some Inverse Problems for Partial Differential Equations
数学科学:偏微分方程的一些反问题
  • 批准号:
    9002547
  • 财政年份:
    1990
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant

相似海外基金

Grazing management impacts to plant communities through an applied and theoretical lens
通过应用和理论视角放牧管理对植物群落的影响
  • 批准号:
    548066-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Conference Support for the 19th U.S. National Congress on Theoretical and Applied Mechanics; Austin, Texas; 19-24 June 2022
第十九届美国全国理论与应用力学大会的会议支持;
  • 批准号:
    2222038
  • 财政年份:
    2022
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Core Support of the Board on Mathematical Sciences and Analytics and the Committee on Applied and Theoretical Statistics
数学科学与分析委员会和应用与理论统计委员会的核心支持
  • 批准号:
    2133303
  • 财政年份:
    2022
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
Support for US Early Career Researchers to Present at 25th International Congress of Theoretical & Applied Mechanics (ICTAM); Virtual; August 22-27, 2021
支持美国早期职业研究人员出席第 25 届国际理论大会
  • 批准号:
    2135969
  • 财政年份:
    2021
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
Grazing management impacts to plant communities through an applied and theoretical lens
通过应用和理论视角放牧管理对植物群落的影响
  • 批准号:
    548066-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Breather and Soliton Gases for the Focusing Nonlinear Schrodinger Equation: Theoretical and Applied Aspects
用于聚焦非线性薛定谔方程的呼吸气体和孤子气体:理论和应用方面
  • 批准号:
    2009647
  • 财政年份:
    2020
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Continuing Grant
Grazing management impacts to plant communities through an applied and theoretical lens
通过应用和理论视角放牧管理对植物群落的影响
  • 批准号:
    548066-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Theoretical and Applied Research on Spatial Design Strategies for Optimal Transport
最优交通空间设计策略的理论与应用研究
  • 批准号:
    19H02374
  • 财政年份:
    2019
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Establishing the contemporary sociology of time: Conceptions of social time elucidated via integration of axiomatic method and theoretical, historical, and applied studies
建立当代时间社会学:通过公理方法与理论、历史和应用研究的结合阐明社会时间的概念
  • 批准号:
    19K02145
  • 财政年份:
    2019
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Travel Support for International Union of Theoretical and Applied Mechanics (IUTAM) Symposium on Shape Memory Alloys; Austin, Texas; April 28-May 2, 2019
国际理论与应用力学联合会 (IUTAM) 形状记忆合金研讨会的差旅支持;
  • 批准号:
    1927658
  • 财政年份:
    2019
  • 资助金额:
    $ 7.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了