Breather and Soliton Gases for the Focusing Nonlinear Schrodinger Equation: Theoretical and Applied Aspects
用于聚焦非线性薛定谔方程的呼吸气体和孤子气体:理论和应用方面
基本信息
- 批准号:2009647
- 负责人:
- 金额:$ 24.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The most familiar manifestation of nonlinear dispersive waves is perhaps that of a breaking ocean wave. Nonlinear dispersive waves are ubiquitous in nature, appearing in many fields ranging from water waves to optics, acoustics, condensed matter, cosmology and beyond. Nonlinear dispersive waves have been an area of intensive research interest in applied mathematics and physics. The integrable Nonlinear Schrödinger (NLS) equation is generally accepted as the universal model for waves propagating in nonlinear dispersive media. The main idea of this project is to model random nonlinear waves, which are frequently encountered in natural phenomena, with the so-called soliton or breather gases – random ensembles of the well-known solutions of the equation. Ultimately, the project aims to enhance our ability to predict and, in some cases, to control random nonlinear waves. This research employs ideas of pure and applied mathematics that are enhanced by the collaboration with experimental physicists. The project will also serve as a vehicle for training PhD students.The main goals of this project can be divided in the two categories: (a) development of the rigorous spectral theory for the focusing NLS (fNLS) gases and construction of their semiclassical limit realizations; (b) statistical characterization of breather and soliton gases in terms of their spectral characteristics together with applications in random nonlinear wave problems. The work in part (a) requires rigorous derivation and analysis of integro-differential equations describing spectral characteristics of the gases. Calculation of important statistical characteristics (probability density function, power spectrum, kurtosis, etc.) of the fNLS gases in part (b) contains both analytical and numerical components. The obtained results are expected to lead to lab experiments in collaboration with European experimentalists. In general, the project will have an impact on a broad area of nonlinear wave theory, including integrable turbulence. In fiber optics, results of the project may help to examine, and ultimately to control the evolution of noise in nonlinear optical fibers. The project is also expected to advance our general knowledge of random nonlinear waves, including the rogue waves, and to improve methods of their prediction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最熟悉的非线性色散波的表现可能是破碎的海浪。非线性色散波在自然界中无处不在,出现在许多领域,从水波到光学、声学、凝聚态、宇宙学等。非线性色散波一直是应用数学和物理研究的热点。可积非线性Schrödinger (NLS)方程被普遍认为是波在非线性色散介质中传播的通用模型。这个项目的主要思想是用所谓的孤子或呼吸气体——众所周知的方程解的随机集合——来模拟自然现象中经常遇到的随机非线性波。最终,该项目旨在提高我们预测的能力,并在某些情况下,控制随机非线性波。这项研究采用了纯数学和应用数学的思想,这些思想通过与实验物理学家的合作得到了加强。该项目还将作为培养博士生的工具。本项目的主要目标可分为两大类:(a)发展聚焦NLS气体的严格光谱理论和构建其半经典极限实现;(b)呼吸子和孤子气体的光谱特性的统计特性及其在随机非线性波动问题中的应用。(a)部分的工作需要对描述气体光谱特性的积分微分方程进行严格的推导和分析。(b)部分中fNLS气体的重要统计特性(概率密度函数、功率谱、峰度等)的计算包含解析和数值两部分。预计获得的结果将导致与欧洲实验人员合作进行实验室实验。总的来说,该项目将对包括可积湍流在内的非线性波动理论的广泛领域产生影响。在光纤中,该项目的结果可能有助于研究并最终控制非线性光纤中噪声的演变。该项目还有望提高我们对随机非线性波(包括异常波)的一般认识,并改进其预测方法。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Partial degeneration of finite gap solutions to the Korteweg–de Vries equation: soliton gas and scattering on elliptic backgrounds
- DOI:10.1088/1361-6544/accfdf
- 发表时间:2022-10
- 期刊:
- 影响因子:1.7
- 作者:Marco Bertola;Robert Jenkins;A. Tovbis
- 通讯作者:Marco Bertola;Robert Jenkins;A. Tovbis
Elliptic finite-band potentials of a non-self-adjoint Dirac operator
- DOI:10.1016/j.aim.2023.109188
- 发表时间:2022-10
- 期刊:
- 影响因子:1.7
- 作者:G. Biondini;Xu‐Dan Luo;Jeffrey Oregero;A. Tovbis
- 通讯作者:G. Biondini;Xu‐Dan Luo;Jeffrey Oregero;A. Tovbis
Prediction and manipulation of hydrodynamic rogue waves via nonlinear spectral engineering
通过非线性谱工程预测和操纵水动力流氓波
- DOI:10.1103/physrevfluids.7.054401
- 发表时间:2022
- 期刊:
- 影响因子:2.7
- 作者:Tikan, Alexey;Bonnefoy, Felicien;Roberti, Giacomo;El, Gennady;Tovbis, Alexander;Ducrozet, Guillaume;Cazaubiel, Annette;Prabhudesai, Gaurav;Michel, Guillaume;Copie, Francois
- 通讯作者:Copie, Francois
On the spectrum of the periodic focusing Zakharov–Shabat operator
- DOI:10.4171/jst/432
- 发表时间:2020-10
- 期刊:
- 影响因子:1
- 作者:G. Biondini;Jeffrey Oregero;A. Tovbis
- 通讯作者:G. Biondini;Jeffrey Oregero;A. Tovbis
Local Emergence of Peregrine Solitons: Experiments and Theory
- DOI:10.3389/fphy.2020.599435
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:A. Tikan;S. Randoux;G. El;A. Tovbis;F. Copie;P. Suret
- 通讯作者:A. Tikan;S. Randoux;G. El;A. Tovbis;F. Copie;P. Suret
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Tovbis其他文献
Erratum Homoclinic connections and numerical integration (Numerical Algorithms 14 (1997) 261–267)
- DOI:
10.1023/a:1016696710375 - 发表时间:
1998-07-01 - 期刊:
- 影响因子:2.000
- 作者:
Alexander Tovbis - 通讯作者:
Alexander Tovbis
Non-standard Green energy problems in the complex plane
- DOI:
10.1007/s13324-023-00841-7 - 发表时间:
2023-09-09 - 期刊:
- 影响因子:1.600
- 作者:
Abey López-García;Alexander Tovbis - 通讯作者:
Alexander Tovbis
Homoclinic connections and numerical integration
- DOI:
10.1023/a:1019121231815 - 发表时间:
1997-04-01 - 期刊:
- 影响因子:2.000
- 作者:
Alexander Tovbis - 通讯作者:
Alexander Tovbis
Approximation of the Thermodynamic Limit of Finite-Gap Solutions to the Focusing NLS Hierarchy by Multisoliton Solutions
- DOI:
10.1007/s00220-025-05357-8 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:2.600
- 作者:
Robert Jenkins;Alexander Tovbis - 通讯作者:
Alexander Tovbis
Nonlinear Steepest Descent Asymptotics for Semiclassical Limit of Integrable Systems: Continuation in the Parameter Space
- DOI:
10.1007/s00220-009-0984-0 - 发表时间:
2010-01-19 - 期刊:
- 影响因子:2.600
- 作者:
Alexander Tovbis;Stephanos Venakides - 通讯作者:
Stephanos Venakides
Alexander Tovbis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Tovbis', 18)}}的其他基金
Asymptotic Methods for Singularly Perturbed Nonlinear Systems
奇异摄动非线性系统的渐近方法
- 批准号:
0508779 - 财政年份:2005
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Asymptotic Methods for Singularity Perturbed Nonlinear Systems
奇异摄动非线性系统的渐近方法
- 批准号:
0207201 - 财政年份:2002
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
- 批准号:
9796164 - 财政年份:1997
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
- 批准号:
9500644 - 财政年份:1995
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
相似国自然基金
黎曼流形上的Ricci Soliton及几何结构研究
- 批准号:11401179
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Witten Laplacian的特征值及与其相关的Ricci Soliton研究
- 批准号:11371018
- 批准年份:2013
- 资助金额:56.0 万元
- 项目类别:面上项目
Ricci soliton 几何性质的研究
- 批准号:11226081
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
曲率流下soliton的几何性质与应用
- 批准号:11126204
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
约瑟夫逊结传输线中的孤子(soliton)研究
- 批准号:18670744
- 批准年份:1986
- 资助金额:4.0 万元
- 项目类别:面上项目
相似海外基金
High-energy short-wavelength infrared soliton dynamics and sub-cycle strong-field physics
高能短波红外孤子动力学与亚周期强场物理
- 批准号:
EP/Z001250/1 - 财政年份:2024
- 资助金额:
$ 24.2万 - 项目类别:
Fellowship
Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.
可积色散偏微分方程中规则和随机孤子气体的分析。
- 批准号:
2307142 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Application of high-speed flame propagation mechanism by vortex filament soliton to hydrogen and ammonia combustion fields toward decarbonization
涡丝孤子高速火焰传播机制在氢氨燃烧领域的脱碳应用
- 批准号:
23K03687 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-soliton Dynamics for Dispersive Partial Differential Equations
色散偏微分方程的多孤子动力学
- 批准号:
2247290 - 财政年份:2023
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Nonlinear acoustic theory toward a transform of shock to soliton in liquids by microbubbles
非线性声学理论通过微泡将液体中的激波转换为孤子
- 批准号:
22K03898 - 财政年份:2022
- 资助金额:
$ 24.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Microbubble resonator dispersion engineering for blue-band soliton comb generation
用于蓝带孤子梳生成的微泡谐振器色散工程
- 批准号:
22K14621 - 财政年份:2022
- 资助金额:
$ 24.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Soliton gas at the crossroads of dispersive and generalised hydrodynamics
孤子气体处于色散和广义流体动力学的十字路口
- 批准号:
EP/W032759/1 - 财政年份:2022
- 资助金额:
$ 24.2万 - 项目类别:
Research Grant
Workshop on Trends in Soliton Dynamics and Singularity Formation for Nonlinear Dispersive PDEs
非线性色散偏微分方程孤子动力学和奇点形成趋势研讨会
- 批准号:
2230164 - 财政年份:2022
- 资助金额:
$ 24.2万 - 项目类别:
Standard Grant
Soliton Dynamics for Non-Linear Wave Equations
非线性波动方程的孤子动力学
- 批准号:
1954455 - 财政年份:2020
- 资助金额:
$ 24.2万 - 项目类别:
Continuing Grant
Semiclassical aspects of soliton dynamics
孤子动力学的半经典方面
- 批准号:
2271929 - 财政年份:2019
- 资助金额:
$ 24.2万 - 项目类别:
Studentship