Southeast Conference on Applied Mathematics to be held November 9-11, 2001 in Raleigh, North Carolina
东南应用数学会议将于 2001 年 11 月 9 日至 11 日在北卡罗来纳州罗利举行
基本信息
- 批准号:0107812
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-09-01 至 2002-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0107812GremaudThis award will support the Southeast Conference on Applied Mathematics (SECAM). The conference will focus on four overlapping themes: i) Mathematical Methods for Multiscale Problems, ii) Industrial Mathematics, iii) Mathematical and Computational Biology, and iv) Material Science. Multiscaled models are found in a wide range of applications and pose difficulties for both mathematical and numerical analysis. What is, for instance, the effect of the fine scale behavior on the solutions? How well should the fine scales be resolved to obtain accurate information? etc. The problems to be discussed in Industrial Mathematics come from areas such as microelectronic, chemical manufacturing and material processing, and will focus on the process of technology transfer. The extreme complexity of the problems studied in Mathematical Biology precludes a traditional "pencil and paper" approach and calls rather for an integrated approach between mathematical modeling and computer analyses. This trend has been accelerated by the development of productive partnerships between experimentalists, theoreticians and mathematicians with similar interests but very different areas of expertise. Successful examples will be discussed. The study of emerging applications in the Material Sciences such as granular flows, thin films or smart materials has led to the discovery of new kind of instabilities and interface propagation problems. This session will aim at facilitating the migration of the most successful analysis and computational techniques from specific areas of Material Science to other problems.The conference aims at accomplishing three main goals: Interaction, Showcase, and New Activities. Interaction: The conference will provide a forum and gathering place for applied mathematicians in the Southeast. It will reach out to several groups that are underrepresented in traditional meetings. First, many successful collaborations have been established between applied mathematicians and scientists from local companies and governmental laboratories in technological parks such as Research Triangle Park, NC. Several industrial partners have been invited to give presentations. Second, there are emerging centers of excellence within the many local colleges and historically black institutions. Speakers and students from such institution have been invited to contribute to the success of the conference. Showcase: The high level of activity in Applied and Industrial Mathematics is not always accurately represented through the usual channels of communication. Indeed, by its very nature, a sizable part of the work done in Industrial Mathematics gets to be published in specialized engineering type journals, reaching only a small portion of the Applied Mathematics community. Conferences such as this one can play a fundamental role in unifying and improving approaches that may be similar in many aspects but are used in very distinct applications. Special care has been taken to provide younger scientists and graduate students with the opportunity to present their work and take an active part in the conference. New activities: The audience is expected to span a whole spectrum of expertise, experience and background, from recognized researchers in academia to engineers from the private sector and national research laboratories to students and people with limited research experience in Applied Mathematics. It is expected that not only will the conference give an accurate idea of significant ongoing and future trends in Applied Mathematics, but also will lead to new collaborations and applications.
0107812GremaudThis奖将支持东南应用数学会议(SECAM)。会议将集中在四个重叠的主题:i)多尺度问题的数学方法,ii)工业数学,iii)数学和计算生物学,iv)材料科学。多尺度模型有着广泛的应用,给数学和数值分析带来了困难。例如,精细尺度行为对解的影响是什么?为了获得准确的信息,精细的尺度应该分辨到什么程度?在工业数学中讨论的问题来自微电子,化学制造和材料加工等领域,并将集中在技术转移的过程中。数学生物学研究的问题的极端复杂性排除了传统的“铅笔和纸”的方法,而要求数学建模和计算机分析之间的综合方法。这一趋势已经加速了实验学家,理论家和数学家之间的生产伙伴关系的发展具有相似的利益,但非常不同的专业领域。将讨论成功的例子。对材料科学中新兴应用的研究,如颗粒流、薄膜或智能材料,导致了新型不稳定性和界面传播问题的发现。本次会议旨在促进最成功的分析和计算技术从材料科学的特定领域迁移到其他问题。会议旨在实现三个主要目标:互动,展示和新活动。互动:会议将为东南部的应用数学家提供一个论坛和聚会场所。它将接触在传统会议中代表性不足的几个群体。首先,应用数学家与当地公司和政府实验室的科学家在技术园区(如北卡罗来纳州研究三角园区)建立了许多成功的合作关系。几个工业伙伴应邀作了介绍。第二,在许多当地大学和历史悠久的黑人机构中,出现了一些卓越的中心。已邀请这些机构的发言者和学生为会议的成功作出贡献。产品展示:应用数学和工业数学的高水平活动并不总是通过通常的沟通渠道准确地表示。事实上,就其本质而言,工业数学中所做的相当大一部分工作都发表在专业的工程类期刊上,只有一小部分应用数学社区能够接触到。像这样的会议可以在统一和改进可能在许多方面相似但用于非常不同的应用程序的方法方面发挥根本作用。特别注意为年轻的科学家和研究生提供机会,介绍他们的工作,并积极参加会议。新活动:观众预计将跨越整个专业知识,经验和背景,从学术界公认的研究人员到私营部门和国家研究实验室的工程师,再到学生和应用数学研究经验有限的人。预计会议不仅将准确了解应用数学的重要持续和未来趋势,而且还将导致新的合作和应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pierre Gremaud其他文献
Pierre Gremaud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pierre Gremaud', 18)}}的其他基金
Dimension Reduction for Nonlinear Stochastic Systems
非线性随机系统的降维
- 批准号:
1953271 - 财政年份:2020
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
QuBBD: Classification and clustering of medical time series data: the example of syncope
QuBBD:医疗时间序列数据的分类和聚类:晕厥示例
- 批准号:
1557761 - 财政年份:2015
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Collaborative Research: Random Dynamics on Networks
合作研究:网络随机动力学
- 批准号:
1522765 - 财政年份:2015
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
Numerical methods for transport problems on networks
网络传输问题的数值方法
- 批准号:
0811150 - 财政年份:2008
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Sparse Shearlet Representation: Analysis, Implementation and Applications
稀疏剪切波表示:分析、实现和应用
- 批准号:
0604561 - 财政年份:2006
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Computational Methods for Bulk Solid Handling Problems
散装固体处理问题的计算方法
- 批准号:
0410561 - 财政年份:2004
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
相似海外基金
Conference: ICSA 2024 Applied Statistical Symposium
会议:ICSA 2024应用统计研讨会
- 批准号:
2410953 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Conference: Fourth Biennial Meeting of the Society of Industrial and Applied Mathematics (PNW Section)
会议:工业与应用数学学会第四届双年会(PNW 分会)
- 批准号:
2336793 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Conference: ICSA 2023 Applied Statistical Symposium
会议:ICSA 2023应用统计研讨会
- 批准号:
2247212 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
The 2023 Canadian Centre for Applied Research in Cancer Control (ARCC) Conference
2023年加拿大癌症控制应用研究中心(ARCC)会议
- 批准号:
480786 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Miscellaneous Programs
2023 Applied and Environmental Microbiology Gordon Research Conference and Seminar
2023应用与环境微生物学戈登研究会议暨研讨会
- 批准号:
10751828 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Conference: 2023 Applied and Environmental Microbiology GRC and GRS: Writing the Microbial Constitution
会议:2023年应用与环境微生物学GRC和GRS:书写微生物宪法
- 批准号:
2313268 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Conference: Society for Applied Anthropology 2024
会议:应用人类学学会 2024
- 批准号:
2333784 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Conference: Travel Support for International Congress on Industrial and Applied Mathematics (ICIAM) 2023
会议:2023 年国际工业与应用数学大会 (ICIAM) 差旅支持
- 批准号:
2233032 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Conference: Conference on Frontiers in Applied and Computational Mathematics (FACM 2023): New trends in computational wave propagation and imaging
会议:应用与计算数学前沿会议(FACM 2023):计算波传播和成像的新趋势
- 批准号:
2246813 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Conference: The Adjoint School: A Training Program for New Researchers in Applied Category Theory
会议:附属学校:应用范畴理论新研究人员培训计划
- 批准号:
2216871 - 财政年份:2022
- 资助金额:
$ 1万 - 项目类别:
Standard Grant