Numerical methods for transport problems on networks
网络传输问题的数值方法
基本信息
- 批准号:0811150
- 负责人:
- 金额:$ 20.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to develop efficient numerical methods for the simulation of networked systems of hyperbolic balance laws. In such networks, each edge is a quasi one-dimensional domain interacting with the rest of the system through junctions at each of its ends. The character of those interactions depends on the applications at hand; ideally, they aremodeled to mitigate the effects of dimension reduction. Mathematically, the presence of junctions complicates the selection process of proper solutions. The naive use of existing numerical methods in the present context may be inefficient, unstable and lead to nonphysical solutions. Numerical methods specifically optimized for network problems will be designed, analyzed and implemented. This involves not only discretization issues but also and more importantly the construction of new solvers. Those solvers will be designed by building on recent progress in both numerical methods for differential algebraic equations and in domain decomposition methods. Some phenomena are essentially one-dimensional in most of the computational domain and only "locally multidimensional". Being able to reliably switch to one-dimensional approximations represents significant savings; how to do this efficiently will be investigated. Transport phenomena in trees, which play an essential role in many organisms (breathing, blood circulation,etc...), lead to other types of couplings for which new numerical approaches are also proposed. Two applications are considered as test beds for various aspects of the research. They respectively involve blood flows in arteries and gas flows.Networks of roads, pipelines or arteries play a fundamental role in many aspects of our lives. They allow the efficient transport and distribution of, for instance, cars, raw sewage, gas or blood in respectively cities, countries, organisms, etc... Related practical problems range from business (optimization of natural gas pipeline networks) and public safety (emergency evacuation schedules in specific geographic areas) to health (likelihood of stroke based on patients' vasculature). While the tools of scientific computing have been applied very successfully to many types of transport phenomena such as problems in aerodynamics, the numerical simulation of transport on networks faces several specific challenges that have yet to resolved. Three main issues will be studied. (i) Efficiency: the methods have to be nimble enough to allow the simulation of entire networks as opposed to only some of their parts. (ii) Accuracy: flows are more involved near junctions or crossroads than they are away from them. Different models may have to be used at different locations of a same network. The project will study efficient implementation of such multi-physics models for network flows. (iii) Finally, the various theoretical and numerical aspects of the project will be testedon two specific applications, arterial blood flow and gas flow in rigid pipes.
这项研究的目的是开发有效的数值方法来模拟双曲平衡律的网络系统。在这样的网络中,每条边都是一个准一维域,通过其两端的连接点与系统的其余部分相互作用。这些交互的特征取决于手头的应用程序;理想情况下,对它们进行建模是为了减轻降维的影响。从数学上讲,交叉点的存在使适当解的选择过程变得复杂。在目前的情况下,天真地使用现有的数值方法可能是低效的、不稳定的,并导致非物理解。将设计、分析和实施专门针对网络问题进行优化的数值方法。这不仅涉及离散化问题,而且更重要的是,还涉及建立新的解决方案。这些解算器的设计将建立在微分代数方程数值方法和区域分解方法的最新进展的基础上。在大多数计算领域中,有些现象本质上是一维的,只有“局部多维”。能够可靠地切换到一维近似代表着显著的节省;如何有效地做到这一点将被研究。树中的运输现象在许多生物体(呼吸、血液循环等)中扮演着重要的角色,它导致了其他类型的耦合,也提出了新的数值方法。有两个应用程序被认为是研究各个方面的试验台。它们分别涉及动脉中的血液流动和气体流动。道路、管道或动脉网络在我们生活的许多方面都扮演着基本的角色。例如,它们允许汽车、未经处理的污水、天然气或血液在不同的城市、国家、生物体等中有效地运输和分配。相关的实际问题从商业(天然气管道网络的优化)和公共安全(特定地理区域的紧急疏散时间表)到健康(根据患者的血管系统中风的可能性)。虽然科学计算的工具已经非常成功地应用于许多类型的传输现象,如空气动力学问题,但网络传输的数值模拟面临着一些尚未解决的具体挑战。主要研究三个问题。(I)效率:方法必须足够灵活,以便能够模拟整个网络,而不是只模拟其中的一部分。(2)准确性:人流在交汇点或十字路口附近比远离交汇点或十字路口时更容易受到影响。同一网络的不同位置可能必须使用不同的型号。该项目将研究这种网络流多物理模型的有效实施。(Iii)最后,该项目的各种理论和数值方面将在两个具体应用中进行测试,即动脉血液流动和刚性管道中的气体流动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pierre Gremaud其他文献
Pierre Gremaud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pierre Gremaud', 18)}}的其他基金
Dimension Reduction for Nonlinear Stochastic Systems
非线性随机系统的降维
- 批准号:
1953271 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Continuing Grant
QuBBD: Classification and clustering of medical time series data: the example of syncope
QuBBD:医疗时间序列数据的分类和聚类:晕厥示例
- 批准号:
1557761 - 财政年份:2015
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Collaborative Research: Random Dynamics on Networks
合作研究:网络随机动力学
- 批准号:
1522765 - 财政年份:2015
- 资助金额:
$ 20.72万 - 项目类别:
Continuing Grant
Sparse Shearlet Representation: Analysis, Implementation and Applications
稀疏剪切波表示:分析、实现和应用
- 批准号:
0604561 - 财政年份:2006
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Computational Methods for Bulk Solid Handling Problems
散装固体处理问题的计算方法
- 批准号:
0410561 - 财政年份:2004
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Southeast Conference on Applied Mathematics to be held November 9-11, 2001 in Raleigh, North Carolina
东南应用数学会议将于 2001 年 11 月 9 日至 11 日在北卡罗来纳州罗利举行
- 批准号:
0107812 - 财政年份:2001
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
- 批准号:
EP/W007436/1 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Research Grant
Numerical methods for radiation transport and radiotherapy treatment planning
辐射传输和放射治疗计划的数值方法
- 批准号:
2748264 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Studentship
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
- 批准号:
RGPIN-2017-05666 - 财政年份:2021
- 资助金额:
$ 20.72万 - 项目类别:
Discovery Grants Program - Individual
Establishing analysis methods for characterizing heat transport via numerical calculation
通过数值计算建立表征热传输的分析方法
- 批准号:
20K14659 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collisional Kinetic Transport: Analysis and Numerical Methods
碰撞动力学输运:分析和数值方法
- 批准号:
2009736 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Numerical Methods for Optimal Transport with Applications to Manifold Learning on Singular Spaces
最优传输的数值方法及其在奇异空间流形学习中的应用
- 批准号:
2000128 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale Modeling and Numerical Methods for Charge Transport in Ion Channels
合作研究:离子通道中电荷传输的多尺度建模和数值方法
- 批准号:
1950471 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Continuing Grant
Collaborative Research: Multi-Scale Modeling and Numerical Methods for Charge Transport in Ion Channels
合作研究:离子通道中电荷传输的多尺度建模和数值方法
- 批准号:
1950868 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
- 批准号:
RGPIN-2017-05666 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
- 批准号:
RGPIN-2017-05666 - 财政年份:2019
- 资助金额:
$ 20.72万 - 项目类别:
Discovery Grants Program - Individual