A Neural Network Based Automated Identification System For Biological Species
基于神经网络的生物物种自动识别系统
基本信息
- 批准号:0119578
- 负责人:
- 金额:$ 79.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-09-15 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract0119578PlatnickThis award provides support for the development of a completely automated system capable of providing species-level identifications of organisms based on digital images of specimens. The technology uses an artificial neural network and can use, as input, images transmitted over the internet. At present, obtaining species-level identifications of specimens can be a difficult undertaking. The number of trained systematizes for most groups of organisms is low; the success rate of non-specialists trying to achieve accurate identifications is often lower. Such a system has the potential to radically increase the use of biodiversity information in conservation as well as science. This project is aimed at developing software technology capable of species identification using spiders as test subjects. The approach is based on digital images of taxonomically relevant structures of the organism taken through a camera-equipped dissecting microscope. The images are subjected to wavelet transformation, a procedure that extracts shape information from the image while removing less useful, high-resolution information. By this procedure, the image is reduced to a set of wavelet coefficients that can be supplied to a computing algorithm known as an artificial neural network. Such networks are capable of learning to classify objects. The goal is creation of a system with a 95% accuracy in identification.In the first phase of the project, three datasets will be used: images of two families of Australasian spiders (Trochanteriidae and Prodidomidae), and third set of images defined geographically rather than taxonomically. This geographic set includes specimens from three consecutive years of collecting at selected sites in Tennessee, and is typical of ecological inventory data. In the second phase, a web interface that allows submission of images for identification over the internet will be developed.At present, a severely limiting factor on our understanding of community structure, diversity, and how diversity relates to ecosystem function and resulting human services is the lack of experts capable of identifying biological specimens to species. Thus, the potential impact of automated identification is enormous. A system that can identify any species in a particular family, or from a particular area, without requiring the user to have more than the most basic knowledge of the organism to be identified, has the potential to drastically improve the efficiency and scope of biological inventories, and subsequent monitoring efforts.
该奖项为开发一种完全自动化的系统提供支持,该系统能够根据标本的数字图像提供物种级别的生物识别。该技术使用人工神经网络,可以使用通过互联网传输的图像作为输入。目前,获得物种一级的标本鉴定可能是一项困难的工作。对大多数生物体群体进行系统化训练的人数很少;试图实现准确鉴定的非专家人员的成功率往往较低。这样的系统有可能从根本上增加生物多样性信息在保护和科学方面的使用。该项目旨在开发能够以蜘蛛为测试对象进行物种识别的软件技术。这种方法是基于通过配备相机的解剖显微镜拍摄的生物体分类相关结构的数字图像。对图像进行小波变换,这是一种从图像中提取形状信息,同时去除不太有用的高分辨率信息的过程。通过这个过程,图像被简化为一组小波系数,可以提供给称为人工神经网络的计算算法。这样的网络能够学习对物体进行分类。该项目的目标是建立一个识别准确率为95%的系统。在该项目的第一阶段,将使用三个数据集:澳大利亚蜘蛛的两个家族(斑点蛛科和原蜘蛛科)的图像,以及第三组图像,这些图像是从地理而不是分类的角度定义的。这一地理集合包括连续三年在田纳西州选定地点收集的标本,是典型的生态调查数据。在第二阶段,将开发一个网络界面,允许通过互联网提交图像进行识别。目前,严重限制我们理解群落结构、多样性以及多样性如何与生态系统功能和由此产生的人类服务相关的一个因素是缺乏能够向物种识别生物标本的专家。因此,自动识别的潜在影响是巨大的。一个系统可以识别特定科或特定地区的任何物种,而不需要使用者对要识别的生物体有更多的最基本的知识,这样的系统有可能极大地提高生物清单和后续监测工作的效率和范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Norman Platnick其他文献
Norman Platnick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Norman Platnick', 18)}}的其他基金
PBI: Collaborative Research: The Megadiverse, Microdistributed Spider Family Oonopidae
PBI:合作研究:巨型多样性、微分布的蜘蛛科 Oonopidae
- 批准号:
0613754 - 财政年份:2006
- 资助金额:
$ 79.68万 - 项目类别:
Continuing Grant
Spider Biodiversity: A World Catalog
蜘蛛生物多样性:世界目录
- 批准号:
9503286 - 财政年份:1995
- 资助金额:
$ 79.68万 - 项目类别:
Standard Grant
Arthropod-Collection Improvement at the American Museum of Natural History
美国自然历史博物馆节肢动物收藏的改进
- 批准号:
9220342 - 财政年份:1994
- 资助金额:
$ 79.68万 - 项目类别:
Continuing Grant
Molecular Phylogeny of Spider Families
蜘蛛家族的分子系统发育
- 批准号:
9207335 - 财政年份:1992
- 资助金额:
$ 79.68万 - 项目类别:
Standard Grant
Insect and Arachnid Biodiversity in Southern South America
南美洲南部的昆虫和蜘蛛生物多样性
- 批准号:
9024566 - 财政年份:1991
- 资助金额:
$ 79.68万 - 项目类别:
Continuing Grant
Curatorial Support for Entomological Collections
昆虫学收藏的策展支持
- 批准号:
8815664 - 财政年份:1989
- 资助金额:
$ 79.68万 - 项目类别:
Continuing Grant
Systematics and Biogeography of Chilean Spiders
智利蜘蛛的系统学和生物地理学
- 批准号:
8406225 - 财政年份:1984
- 资助金额:
$ 79.68万 - 项目类别:
Continuing Grant
相似国自然基金
丝氨酸/甘氨酸/一碳代谢网络(SGOC metabolic network)调控炎症性巨噬细胞活化及脓毒症病理发生的机制研究
- 批准号:81930042
- 批准年份:2019
- 资助金额:305 万元
- 项目类别:重点项目
多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
- 批准号:91418205
- 批准年份:2014
- 资助金额:170.0 万元
- 项目类别:重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
- 批准号:60673142
- 批准年份:2006
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 79.68万 - 项目类别:
Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
- 批准号:
23K24829 - 财政年份:2024
- 资助金额:
$ 79.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
- 批准号:
2308530 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
Standard Grant
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
Standard Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
- 批准号:
2334690 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
Standard Grant
Development of a neural-network-based accelerator for holography
开发基于神经网络的全息加速器
- 批准号:
22KK0183 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
- 批准号:
10680206 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
Development of reaction-diffusion based neural network systems
基于反应扩散的神经网络系统的开发
- 批准号:
23H00506 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Safe Lyapunov-Based Deep Neural Network Adaptive Control of a Rehabilitative Upper Extremity Hybrid Exoskeleton
基于安全李亚普诺夫的深度神经网络自适应控制康复上肢混合外骨骼
- 批准号:
2230971 - 财政年份:2023
- 资助金额:
$ 79.68万 - 项目类别:
Standard Grant