Principles of Efficient Inference

高效推理原理

基本信息

  • 批准号:
    0120307
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2005-08-31
  • 项目状态:
    已结题

项目摘要

Principles of Efficient InferenceThis is the first year funding of a three year continuing award. This project seeks to uncover fundamental principles for the construction of real-time AI systems that employ declarative knowledge representations and general reasoning engines. To achieve this goal, the PI will (a) study the "fine grained" structure of problem hardness based on notions coming out of work on phase transitions in random problem distributions; (b) develop faster complete and incomplete reasoning engines, including systems that employ decision-theoretic control of reasoning; and (c) apply and test the new algorithms to planning problems in a robotics testbed. This research will lead to the creation of useful new algorithms for solving hard combinatorial problems in areas such as knowledge-based expert systems, autonomous systems, and operations research. The results will also promote interdisciplinary work on logic and reasoning in the AI, theory, OR, robotics, and verification communities.
有效推理原则这是一个为期三年的持续奖励的第一年资助。该项目旨在揭示使用陈述性知识表示和一般推理引擎构建实时人工智能系统的基本原则。为了实现这一目标,PI将(a)基于随机问题分布中相变的概念研究问题硬度的“细粒度”结构;(b)开发更快的完整和不完整推理引擎,包括采用决策理论控制推理的系统;(c)在机器人测试平台上应用和测试新算法来规划问题。这项研究将产生有用的新算法,用于解决诸如基于知识的专家系统、自治系统和运筹学等领域的困难组合问题。研究结果还将促进人工智能、理论、OR、机器人和验证社区在逻辑和推理方面的跨学科工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Kautz其他文献

Reply to: On the difficulty of achieving differential privacy in practice: user-level guarantees in aggregate location data
回复:关于在实践中实现差分隐私的难度:聚合位置数据中的用户级保证
  • DOI:
    10.1038/s41467-021-27567-z
  • 发表时间:
    2022-01-10
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Aleix Bassolas;Hugo Barbosa-Filho;Brian Dickinson;Xerxes Dotiwalla;Paul Eastham;Riccardo Gallotti;Gourab Ghoshal;Bryant Gipson;Surendra A. Hazarie;Henry Kautz;Onur Kucuktunc;Allison Lieber;Adam Sadilek;Jose J. Ramasco
  • 通讯作者:
    Jose J. Ramasco
Research Challenges and Opportunities in Knowledge Representation
知识表示的研究挑战和机遇
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natasha Noy;Deborah L. McGuinness;Eyal Amir;Chitta Baral;Michael Beetz;S. Bechhofer;C. Boutilier;Anthony Cohn;J. Kleer;Michel Dumontier;Tim Finin;Kenneth D. Forbus;Lise Getoor;Yolanda Gil;J. Heflin;P. Hitzler;Craig A. Knoblock;Henry Kautz;Yuliya Lierler;Vladimir Lifschitz;Peter F. Patel;C. Piatko;D. Riecken;M. Schildhauer
  • 通讯作者:
    M. Schildhauer
OverpassNL: A Community-Generated Dataset and Real-World Semantic Parser for OpenStreetMap
OverpassNL:社区生成的 OpenStreetMap 数据集和真实语义解析器
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thang Luong;Hieu Pham;Christopher D. Manning;Ana;O. Etzioni;Henry Kautz;Alec Radford;Jeffrey Wu;R. Child;D. Luan;Stefan Riezler;Michael Hagmann. 2022;Validity;Rico Sennrich;B. Haddow;Alexandra Birch
  • 通讯作者:
    Alexandra Birch
Ronald J. Brachman and Hector J. Levesque, Machines Like Us: Toward AI with Common Sense
Ronald J. Brachman 和 Hector J. Levesque,《像我们一样的机器:用常识迈向人工智能》
  • DOI:
    10.13169/prometheus.39.2.0121
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henry Kautz
  • 通讯作者:
    Henry Kautz

Henry Kautz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Kautz', 18)}}的其他基金

IPA Action
IPA 行动
  • 批准号:
    1837865
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Intergovernmental Personnel Award
RAPID: SCH: NODE: A Real-Time Smartphone Epidemiological Tool
RAPID:SCH:NODE:实时智能手机流行病学工具
  • 批准号:
    1516340
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
III: Small: TwitterHealth: Learning Fine-Grained Models of Health Influences and Interactions From Social Media
III:小:TwitterHealth:从社交媒体学习健康影响和互动的细粒度模型
  • 批准号:
    1319378
  • 财政年份:
    2013
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
RI-Large: Activity Learning and Recognition for a Cognitive Assistant
RI-Large:认知助理的活动学习和识别
  • 批准号:
    1012017
  • 财政年份:
    2010
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Learning High-level Models of Human Behavior from Low-level Sensor Data
从低级传感器数据学习人类行为的高级模型
  • 批准号:
    0734843
  • 财政年份:
    2006
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Learning High-level Models of Human Behavior from Low-level Sensor Data
从低级传感器数据学习人类行为的高级模型
  • 批准号:
    0535126
  • 财政年份:
    2005
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
  • 批准号:
    2339084
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
  • 批准号:
    2336012
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
  • 批准号:
    EP/X022595/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243053
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
  • 批准号:
    EP/X024881/1
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243052
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Semiparametric Efficient and Robust Inference on High-Dimensional Data
高维数据的半参数高效鲁棒推理
  • 批准号:
    2310578
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
SHF: Medium: Language Support for Sound and Efficient Programmable Inference
SHF:中:对健全且高效的可编程推理的语言支持
  • 批准号:
    2311983
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Efficient and robust inference for regularization with regular and functional data
使用常规数据和函数数据进行高效且稳健的正则化推理
  • 批准号:
    RGPIN-2016-06366
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了