SHF: Medium: Language Support for Sound and Efficient Programmable Inference

SHF:中:对健全且高效的可编程推理的语言支持

基本信息

  • 批准号:
    2311983
  • 负责人:
  • 金额:
    $ 90万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

The goal of this project is to make powerful Bayesian models and inference algorithms more usable, accessible, and reliable in challenging data science problems. Bayesian inference provides a principled approach to learning probabilistic models by combining prior modeling assumptions with observed data. It enables state-of-the-art results in problems from diverse areas including biostatistics, robotics, computational physics, quantitative finance, cognitive science, and machine learning. Advantages of Bayesian inference include the ability to incorporate prior domain-specific knowledge, to quantify uncertainty about parameters and predictions, and to generalize well to novel data. A key challenge, however, is correctly implementing and diagnosing Bayesian inference algorithms, especially those that target sophisticated probabilistic models. The project's novelty is to address this challenge by developing rigorous programming-language techniques that make sound and effective Bayesian inference more easily applicable. The project's impact is to boost the development and exploration of more flexible Bayesian methods among researchers and help domain experts more reliably leverage these technologies for real-world problems.The research plan of the project builds on probabilistic programming languages (PPLs) such as Stan, Gen, and Pyro, which provide interfaces that cleanly separate model development from the specification of the corresponding inference algorithm. To make Bayesian learning feasible for more flexible models and larger data sets, several PPLs have enabled users to write custom probabilistic inference algorithms through "programmable inference" interfaces that automate many complex computations needed to develop effective inference algorithms. However, it is easily possible for users to accidentally write incorrect inference programs in such a way that breaks convergence and leads to unsound results. Even worse, such mistakes often go unnoticed. The research in this project aims to alleviate the fundamental tension between soundness and flexibility of programmable inference by (1) applying new programming-language techniques such as static analysis and type systems to verify whether a user-written inference program satisfies theoretical conditions for soundness; and (2) developing new dynamic statistical program analyses to empirically assess the quality of approximate posterior samples produced from the sound inference program. In this way, the system ensures that approximate inference algorithms are not only soundly implemented but are also effective for a given problem in practice. The practicality of the developed techniques is validated through evaluations on challenging data science problems. Moreover, the research results are integrated in the graduate and undergraduate education at Carnegie Mellon University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是使强大的贝叶斯模型和推理算法在具有挑战性的数据科学问题中更加可用,可访问和可靠。贝叶斯推理提供了一种通过将先验建模假设与观测数据相结合来学习概率模型的原则性方法。它能够在不同领域的问题中实现最先进的结果,包括生物统计学,机器人技术,计算物理学,定量金融,认知科学和机器学习。贝叶斯推理的优点包括能够结合先前的特定领域知识,量化参数和预测的不确定性,以及很好地推广到新的数据。然而,一个关键的挑战是正确地实现和诊断贝叶斯推理算法,特别是那些针对复杂概率模型的算法。该项目的新奇在于通过开发严格的编程语言技术来应对这一挑战,这些技术使合理有效的贝叶斯推理更容易应用。该项目的影响是促进研究人员开发和探索更灵活的贝叶斯方法,并帮助领域专家更可靠地利用这些技术来解决现实世界的问题。该项目的研究计划建立在Stan,Gen和Pyro等概率编程语言(PPL)的基础上,这些语言提供了将模型开发与相应推理算法规范清晰分离的接口。为了使贝叶斯学习适用于更灵活的模型和更大的数据集,一些PPL已经使用户能够通过“可编程推理”接口编写自定义概率推理算法,这些接口自动化了开发有效推理算法所需的许多复杂计算。然而,用户很容易意外地编写不正确的推理程序,从而破坏收敛并导致不合理的结果。更糟糕的是,这样的错误往往被忽视。本计画的研究目的在于缓和可程式推论的可靠性与弹性之间的紧张关系,其方法为:(1)应用新的程式语言技术,例如静态分析与型别系统,来验证使用者所撰写的推论程式是否符合可靠性的理论条件;以及(2)开发新的动态统计程序分析,以经验评估从声音推断产生的近似后验样本的质量程序.通过这种方式,该系统确保近似推理算法不仅能够正确实现,而且在实践中对于给定的问题也是有效的。通过对具有挑战性的数据科学问题的评估,验证了所开发技术的实用性。此外,该研究成果还被纳入卡内基梅隆大学的研究生和本科生教育。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Hoffmann其他文献

Reactive probabilistic belief modeling for mobile robots
移动机器人的反应概率信念建模
  • DOI:
    10.18452/15731
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jan Hoffmann
  • 通讯作者:
    Jan Hoffmann
m6A RNA modification by METTL3 regulates chemo- and radioresistance in pancreatic cancer cells
METTL3 修饰的 m6A RNA 调节胰腺癌细胞的化疗和放射抗性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    菅野貴之;Jan Hoffmann;Jan Janssen;澁谷孝行;小野口昌久;樋口隆弘;Nobutaka Mukumoto;立川章太郎
  • 通讯作者:
    立川章太郎
Gene Expression Changes in Leukocytes During Cardiopulmonary Bypass Are Dependent on Circuit Coating
体外循环期间白细胞基因表达的变化取决于电路涂层
  • DOI:
    10.1161/circulationaha.104.525378
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    J. Seeburger;Jan Hoffmann;H. Wendel;G. Ziemer;H. Aebert
  • 通讯作者:
    H. Aebert
Arrays and References in Resource Aware ML
资源感知机器学习中的数组和引用
A Real-Time Auto-Adjusting Vision System for Robotic Soccer
一种实时自动调节足球机器人视觉系统
  • DOI:
    10.1007/978-3-540-25940-4_19
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthias Jüngel;Jan Hoffmann;Martin Lötzsch
  • 通讯作者:
    Martin Lötzsch

Jan Hoffmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Hoffmann', 18)}}的其他基金

SHF: Small: Automatic Qualitative and Quantitative Verification of CUDA Code
SHF:Small:CUDA代码的自动定性和定量验证
  • 批准号:
    2007784
  • 财政年份:
    2020
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
CAREER: Marlin: A Unified Framework for Automatic and Interactive Quantitative Program Analysis
职业:Marlin:自动和交互式定量程序分析的统一框架
  • 批准号:
    1845514
  • 财政年份:
    2019
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Resource-Guided Program Synthesis
SHF:小型:协作研究:资源引导程序综合
  • 批准号:
    1812876
  • 财政年份:
    2018
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311468
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2311469
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Natural Language Models with Execution Data for Software Testing
协作研究:SHF:媒介:用于软件测试的具有执行数据的自然语言模型
  • 批准号:
    2313028
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Language support in English-medium-instruction higher education: current challenges and effective collaboration between language and content teachers
英语教学高等教育中的语言支持:当前挑战以及语言和内容教师之间的有效合作
  • 批准号:
    2887906
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Studentship
Evaluation of Welsh language programme for English medium primary schools in Wales
威尔士英语授课小学威尔士语课程评估
  • 批准号:
    2879645
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Studentship
Collaborative Research: RI: Medium: Multilingual Long-form QA with Retrieval-Augmented Language Models
合作研究:RI:Medium:采用检索增强语言模型的多语言长格式 QA
  • 批准号:
    2312948
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Multilingual Long-form QA with Retrieval-Augmented Language Models
合作研究:RI:Medium:采用检索增强语言模型的多语言长格式 QA
  • 批准号:
    2312949
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Natural Language Models with Execution Data for Software Testing
协作研究:SHF:媒介:用于软件测试的具有执行数据的自然语言模型
  • 批准号:
    2313027
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了