CAREER: Quantum Phases and Phase Transitions in Strongly Correlated Systems
职业:强相关系统中的量子相和相变
基本信息
- 批准号:0132874
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-02-15 至 2008-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a CAREER award that combines research and educational activities. The research topic is strongly correlated electron systems. The research component adopts a strategy of considering particular systems with a goal of developing general tools for studying the role of interactions in fermionic and bosonic systems, and bringing out a common framework for understanding the physics of strongly correlated states of matter. Intrplay of superconductivity and antiferromagnetism in the high Tc cuprates will be investigated to understand electron systems with competing instabilities. Stripes in the quantum Hall systems at integer filling factors will be studied as an example of electron systems with phase separation on mesoscopic scale. The relation between bosonic and fermionic mechanisms of suppression of superconductivity and the role of dissipation on the superconductor to insulator transition will be considered in the case of one-dimensional systems (wires and chains of Josephson junctions) as a typical example of quantum phase transitions. Spinor bosonic atoms in optical lattices will be studied to learn about the role of interactions in bosonic systems. Investigation of fundamental and universal properties will be complemented by concrete calculations of observable quantities that can be verified in experiments. The educational component involves developing an undergraduate course that presents condensed matter physics from the point of view of relevance to practical applications. By discussing recent developments in technology the course will motivate students to learn about progress in condensed matter physics and show the science in its dynamics: from basic research to industrial innovations. The course will use examples of modern microelectronics, semiconductor optics, magnetoelectronics and others to show how discoveries in condensed matter physics initiated major transformations in industry in the past. It will also address areas of current academic research that may play a crucial role in technologies of the future, for example, nanotechnology, and quantum computations and communications. Presentations will be accessible to an audience with only a superficial knowledge of quantum physics. This is a CAREER award that combines research and educational activities. The research topic is strongly correlated electron systems. The research component adopts a strategy of considering particular systems with a goal of developing general tools for studying the role of interactions in fermionic and bosonic systems, and bringing out a common framework for understanding the physics of strongly correlated states of matter. Intrplay of superconductivity and antiferromagnetism in the high Tc cuprates will be investigated to understand electron systems with competing instabilities. Stripes in the quantum Hall systems at integer filling factors will be studied as an example of electron systems with phase separation on mesoscopic scale. The relation between bosonic and fermionic mechanisms of suppression of superconductivity and the role of dissipation on the superconductor to insulator transition will be considered in the case of one-dimensional systems (wires and chains of Josephson junctions) as a typical example of quantum phase transitions. Spinor bosonic atoms in optical lattices will be studied to learn about the role of interactions in bosonic systems. Investigation of fundamental and universal properties will be complemented by concrete calculations of observable quantities that can be verified in experiments. The educational component involves developing an undergraduate course that presents condensed matter physics from the point of view of relevance to practical applications. By discussing recent developments in technology the course will motivate students to learn about progress in condensed matter physics and show the science in its dynamics: from basic research to industrial innovations. The course will use examples of modern microelectronics, semiconductor optics, magnetoelectronics and others to show how discoveries in condensed matter physics initiated major transformations in industry in the past. It will also address areas of current academic research that may play a crucial role in technologies of the future, for example, nanotechnology, and quantum computations and communications. Presentations will be accessible to an audience with only a superficial knowledge of quantum physics.
这是一个将研究和教育活动结合在一起的职业奖项。研究主题是强关联电子系统。研究部分采用了一种考虑特定系统的策略,目的是开发通用工具来研究费米子和玻色子系统中相互作用的作用,并提出一个理解强关联物质状态物理的共同框架。高T_c铜酸盐中超导电性和反铁磁性的相互作用将被研究,以了解具有竞争不稳定性的电子系统。我们将以介观尺度上具有相分离的电子系统为例,研究整数填充因子下量子霍尔系统中的条纹。在一维系统(约瑟夫森结线和链)作为量子相变的典型例子的情况下,将考虑抑制超导电性的玻色子和费米子机制之间的关系以及耗散在超导体到绝缘体转变中的作用。我们将研究光学晶格中的旋量玻色子原子,以了解相互作用在玻色子系统中的作用。对基本和普遍性质的研究将得到可观察到的量的具体计算的补充,这些计算可以在实验中得到验证。教育部分包括开发一门本科课程,从与实际应用相关的角度介绍凝聚态物理。通过讨论技术的最新发展,本课程将激励学生学习凝聚态物理的进展,并展示其动态的科学:从基础研究到工业创新。本课程将使用现代微电子学、半导体光学、磁电子学和其他学科的例子来展示凝聚态物理的发现如何在过去引发工业的重大变革。它还将涉及当前学术研究的领域,这些领域可能在未来的技术中发挥关键作用,例如纳米技术、量子计算和通信。只有对量子物理有初步了解的观众才能看到演示文稿。这是一个将研究和教育活动结合在一起的职业奖项。研究主题是强关联电子系统。研究部分采用了一种考虑特定系统的策略,目的是开发通用工具来研究费米子和玻色子系统中相互作用的作用,并提出一个理解强关联物质状态物理的共同框架。高T_c铜酸盐中超导电性和反铁磁性的相互作用将被研究,以了解具有竞争不稳定性的电子系统。我们将以介观尺度上具有相分离的电子系统为例,研究整数填充因子下量子霍尔系统中的条纹。在一维系统(约瑟夫森结线和链)作为量子相变的典型例子的情况下,将考虑抑制超导电性的玻色子和费米子机制之间的关系以及耗散在超导体到绝缘体转变中的作用。我们将研究光学晶格中的旋量玻色子原子,以了解相互作用在玻色子系统中的作用。对基本和普遍性质的研究将得到可观察到的量的具体计算的补充,这些计算可以在实验中得到验证。教育部分包括开发一门本科课程,从与实际应用相关的角度介绍凝聚态物理。通过讨论技术的最新发展,本课程将激励学生学习凝聚态物理的进展,并展示其动态的科学:从基础研究到工业创新。本课程将使用现代微电子学、半导体光学、磁电子学和其他学科的例子来展示凝聚态物理的发现如何在过去引发工业的重大变革。它还将涉及当前学术研究的领域,这些领域可能在未来的技术中发挥关键作用,例如纳米技术、量子计算和通信。只有对量子物理有初步了解的观众才能看到演示文稿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eugene Demler其他文献
An electronic microemulsion phase emerging from a quantum crystal-to-liquid transition
从量子晶体到液体转变中出现的电子微乳液相
- DOI:
10.1038/s41567-024-02759-8 - 发表时间:
2025-01-20 - 期刊:
- 影响因子:18.400
- 作者:
Jiho Sung;Jue Wang;Ilya Esterlis;Pavel A. Volkov;Giovanni Scuri;You Zhou;Elise Brutschea;Takashi Taniguchi;Kenji Watanabe;Yubo Yang;Miguel A. Morales;Shiwei Zhang;Andrew J. Millis;Mikhail D. Lukin;Philip Kim;Eugene Demler;Hongkun Park - 通讯作者:
Hongkun Park
Variational Approach for Many-Body Systems at Finite Temperature
- DOI:
10.1103/physrevlett.125.180602 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Tao Shi;Eugene Demler;J. Ignacio Cirac - 通讯作者:
J. Ignacio Cirac
Collective flow of fermionic impurities immersed in a Bose–Einstein condensate
浸没在玻色-爱因斯坦凝聚态中的费米子杂质的集体流动
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:19.6
- 作者:
Zoe Z. Yan;Yiqi Ni;Alexander Chuang;P. Dolgirev;K. Seetharam;Eugene Demler;C. Robens;M. Zwierlein - 通讯作者:
M. Zwierlein
Relaxation after a tight squeeze
在紧张的挤压之后的放松
- DOI:
10.1038/449296a - 发表时间:
2007-09-19 - 期刊:
- 影响因子:48.500
- 作者:
Ehud Altman;Eugene Demler - 通讯作者:
Eugene Demler
Gaussian states for the variational study of (1+1)-dimensional lattice gauge models
用于 (1 1) 维晶格规范模型变分研究的高斯态
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Stefan Kuehn;Pablo Sala;Tao Shi;M. Bañuls;Eugene Demler;J. I. Cirac - 通讯作者:
J. I. Cirac
Eugene Demler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eugene Demler', 18)}}的其他基金
Non-equilibrium dynamics of quantum many-body systems
量子多体系统的非平衡动力学
- 批准号:
1308435 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Strongly Correlated Quantum Systems: From Electronic Materials to Cold Atoms to Photons
强相关的量子系统:从电子材料到冷原子再到光子
- 批准号:
0705472 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Controllable quantum phases in two-dimensional metal-organic nanomaterials
二维金属有机纳米材料中的可控量子相
- 批准号:
DP240102006 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
- 批准号:
23H01092 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Active Feedback to Control Dynamic Quantum Phases
职业:主动反馈控制动态量子相
- 批准号:
2238895 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Conference: Aspen Winter Conference: Disorder and Quantum Phases of Matter
会议:阿斯彭冬季会议:物质的无序和量子相
- 批准号:
2409357 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Design of quantum phases with long-periods by structural defection on a lattice
通过晶格结构缺陷设计长周期量子相
- 批准号:
23KJ0801 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
elucidation of magnetic field induced quantum phases and development of kagome-lattice antiferromagnets in doubly ordered pyrochlore
双序烧绿石中磁场诱导量子相的阐明和戈薇晶格反铁磁体的开发
- 批准号:
23H01123 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Strange metals and the phases of quantum materials
奇异金属和量子材料的相
- 批准号:
2245246 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
MACON-QC: Many-Body Phases In Continuous-Time Quantum Computation
MACON-QC:连续时间量子计算中的多体相
- 批准号:
EP/Y004590/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Novel Phases of Quantum Matter in Numerical Simulations, Field Theory and Materials
数值模拟、场论和材料中量子物质的新相
- 批准号:
2312742 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Dynamical topological phases in monitored quantum circuits
受监控量子电路中的动态拓扑相
- 批准号:
2892177 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship