Strange metals and the phases of quantum materials

奇异金属和量子材料的相

基本信息

  • 批准号:
    2245246
  • 负责人:
  • 金额:
    $ 66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical research which will examine the so-called "strange metal" phase of quantum matter, which is ubiquitous in systems in which the electron-electron interaction is very strong. Quantum mechanics was initially developed in the early twentieth century as a theory of the motion of a single electron around the nucleus of a hydrogen atom, but it can also describe the motion of a large number of electrons in metals and semiconductors, and this description was vital to the electronics revolution. The past few decades have witnessed the discovery of numerous "quantum materials" in which the role of quantum mechanics is more profound than previously thought and not well understood. In quantum materials, it is important to treat the motion of electrons collectively, and account for the entanglement between the different electrons. Most prominent among these new materials are the high temperature superconductors found in a series of compounds which contain copper, oxygen, and numerous other transition metals, which can conduct electricity without any loss of energy above a relatively high temperature. In this project, the PI and his team will develop a theory of electronic motion in such materials focusing especially on a regime of temperatures and electron density where the motion of electrons is most unlike those in conventional materials. This regime is often called the "strange metal" phase, and it is clear that the mutual entanglement of electrons plays an important role in bringing out the peculiar properties of this phase. This project will build on the successes of a model previously developed by the PI, which provides a simple setting in which the entanglement between the electrons is, in a sense, maximal, and yet the equations of quantum mechanics can be solved exactly. The PI and his collaborators have recently extended this model to a more realistic setting which maintains its solvability, and this yields an encouraging correspondence with observations on strange metals. This project will extend this understanding of the strange metal to other phases of quantum materials, including those exhibiting superconductivity at high temperatures and microstructures that consist of one-atom-thick sheets of carbon atoms stacked in various configurations on top of each other.This award will also contribute to the development of the scientific workforce by supporting the training of graduate students and postdoctoral associates in topics at the forefront of theoretical condensed matter physics. Furthermore, the PI will continue to pursue an active program of public lectures, interviews, colloquia, and lectures at schools for advanced graduate students.TECHNICAL SUMMARYThis award supports theoretical research which will examine the "strange metal" phase of quantum matter, which is ubiquitous in correlated electron systems, especially those that exhibit higher temperature superconductivity. A complete, quantitative understanding of the strange metal phase is essential to progress in the theory of quantum materials. The PI and his team have recently made progress on a theory of strange metals, which has the attractive features of being simple, universal, and broadly applicable across the range of correlated materials. In this project, the team will further develop the Sachdev-Ye-Kitaev model and related theories and compare the results quantitatively with numerous experimental probes. For the cuprate superconductors, the strange metal phase will be related to various neighboring phases, including the pseudogap, the superconductor, and the charge-ordered phases. Another focus area of this project is on graphene microstructures and will include studies of nanoscale graphene flakes and the manner in which they can exhibit signatures of the non-Fermi liquid of the Sachdev-Ye-Kitaev model. This award will also contribute to the development of the scientific workforce by supporting the training of graduate students and postdoctoral associates in topics at the forefront of theoretical condensed matter physics. Furthermore, the PI will continue to pursue an active program of public lectures, interviews, colloquia, and lectures at schools for advanced graduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持理论研究,这些研究将研究量子物质的所谓“奇怪的金属”相,这种相在电子-电子相互作用非常强的系统中普遍存在。量子力学最初发展于二十世纪初,是作为单电子围绕氢原子核运动的理论发展起来的,但它也可以描述金属和半导体中大量电子的运动,这一描述对电子革命至关重要。在过去的几十年里,人们发现了无数的量子材料,其中量子力学的作用比人们之前认为的更深刻,也没有得到很好的理解。在量子材料中,重要的是统一处理电子的运动,并考虑不同电子之间的纠缠。在这些新材料中,最突出的是在一系列化合物中发现的高温超导体,这些化合物含有铜、氧和许多其他过渡金属,它们可以在相对较高的温度下导电而不会损失任何能量。在这个项目中,PI和他的团队将开发一种关于此类材料中电子运动的理论,特别是在电子运动与传统材料中最不同的温度和电子密度制度上。这一体系通常被称为“奇怪的金属”相,显然,电子的相互纠缠在揭示这一相的特殊性质方面起着重要作用。这个项目将建立在PI之前开发的一个模型的成功基础上,该模型提供了一个简单的设置,在这个设置中,电子之间的纠缠在某种意义上是最大的,但量子力学的方程可以精确地求解。PI和他的合作者最近将这个模型扩展到了一个更现实的环境,保持了它的可溶性,这产生了与对奇怪金属的观察相一致的令人鼓舞的结果。该项目将把对这种奇怪金属的理解扩展到量子材料的其他相,包括那些在高温下表现出超导电性的相,以及由一个原子厚的碳原子片以不同的配置堆叠在一起的微观结构。该奖项还将通过支持对理论凝聚态物理前沿课题的研究生和博士后助理的培训,为科学工作者的发展做出贡献。此外,PI将继续开展一项积极的计划,包括公开讲座、访谈、座谈和高级研究生学校的讲座。技术总结该奖项支持研究量子物质的“奇怪金属”相的理论研究,这种相普遍存在于关联电子系统中,特别是那些表现出更高温度超导的系统。对奇异金属相的完整、定量的理解对于量子材料理论的发展是至关重要的。PI和他的团队最近在一种奇怪金属理论上取得了进展,该理论具有简单、通用和广泛适用于各种相关材料的吸引人的特点。在这个项目中,该团队将进一步发展Sachdev-Ye-Kitaev模型和相关理论,并将结果与众多实验探测器进行定量比较。对于铜酸盐超导体来说,奇怪的金属相与各种相邻相有关,包括伪隙相、超导体相和电荷有序相。该项目的另一个重点领域是石墨烯微结构,将包括对纳米级石墨烯薄片的研究,以及它们展示Sachdev-Ye-Kitaev模型的非费米液体特征的方式。该奖项还将通过支持研究生和博士后助理在理论凝聚态物理前沿课题上的培训,为科学队伍的发展做出贡献。此外,PI将继续开展一项积极的计划,包括公开讲座、面试、座谈和高级研究生学校的讲座。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Subir Sachdev其他文献

Quantum coarsening and collective dynamics on a programmable simulator
量子粗化和可编程模拟器上的集体动力学
  • DOI:
    10.1038/s41586-024-08353-5
  • 发表时间:
    2025-02-05
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Tom Manovitz;Sophie H. Li;Sepehr Ebadi;Rhine Samajdar;Alexandra A. Geim;Simon J. Evered;Dolev Bluvstein;Hengyun Zhou;Nazli Ugur Koyluoglu;Johannes Feldmeier;Pavel E. Dolgirev;Nishad Maskara;Marcin Kalinowski;Subir Sachdev;David A. Huse;Markus Greiner;Vladan Vuletić;Mikhail D. Lukin
  • 通讯作者:
    Mikhail D. Lukin
Statistical mechanics of strange metals and black holes
奇异金属和黑洞的统计力学
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Subir Sachdev
  • 通讯作者:
    Subir Sachdev
Quantum Phase Transitions: A first course
  • DOI:
    10.1017/cbo9780511973765
  • 发表时间:
    1999-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Subir Sachdev
  • 通讯作者:
    Subir Sachdev
Vortex structure in a $d$-wave superconductor obtained by a confinement transition from the pseudogap metal
通过赝能隙金属的限制跃迁获得 $d$ 波超导体中的涡旋结构
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia;Subir Sachdev
  • 通讯作者:
    Subir Sachdev
Fermi surfaces without quasiparticles
没有准粒子的费米面
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Subir Sachdev
  • 通讯作者:
    Subir Sachdev

Subir Sachdev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Subir Sachdev', 18)}}的其他基金

New Paradigms of Quantum Criticality
量子临界性的新范式
  • 批准号:
    2002850
  • 财政年份:
    2020
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant
Theories of Metals with Correlated Electrons
具有相关电子的金属理论
  • 批准号:
    1664842
  • 财政年份:
    2017
  • 资助金额:
    $ 66万
  • 项目类别:
    Standard Grant
Criticality and Order in Quantum Matter
量子物质的临界性和有序性
  • 批准号:
    1360789
  • 财政年份:
    2014
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant
Novel Phases of Quantum Matter
量子物质的新相
  • 批准号:
    1103860
  • 财政年份:
    2011
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant
Quantum Phase Transitions of Correlated Electrons and Atoms
相关电子和原子的量子相变
  • 批准号:
    0757145
  • 财政年份:
    2008
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant
Quantum Phase Transitions in Condensed Matter and Atomic Physics
凝聚态物质和原子物理中的量子相变
  • 批准号:
    0455678
  • 财政年份:
    2005
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant
Quantum Phase Transitions in Condensed Matter and Atomic Physics
凝聚态物质和原子物理中的量子相变
  • 批准号:
    0537077
  • 财政年份:
    2005
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant
Dynamics of Quantum Magnets and Superconductors
量子磁体和超导体的动力学
  • 批准号:
    0098226
  • 财政年份:
    2001
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant
Quantum Phase Transitions in Spin Systems
自旋系统中的量子相变
  • 批准号:
    9623181
  • 财政年份:
    1996
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant
Theory of Quantum Antiferromagnets
量子反铁磁体理论
  • 批准号:
    9224290
  • 财政年份:
    1993
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant

相似国自然基金

Rare Metals(稀有金属(英文版))
  • 批准号:
    51224002
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
红树对重金属的定位累积及耦合微观分析与耐受策略研究
  • 批准号:
    30970527
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Temporal and Spatial Concentration of Energy Using Solid-Gas-Liquid Mixed Phases and Development to Improve Fatigue Strength of 3D Metals
利用固-气-液混合相进行能量的时空集中以及提高3D金属疲劳强度的开发
  • 批准号:
    23H01292
  • 财政年份:
    2023
  • 资助金额:
    $ 66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Amalgams of less noble metals as model systems for polar intermetallic phases
低贵金属的汞齐作为极性金属间相的模型系统
  • 批准号:
    429690805
  • 财政年份:
    2019
  • 资助金额:
    $ 66万
  • 项目类别:
    Research Grants
Novel Metastable Phases and Kinetics Studies in Transition Metals and Alloys under Terapascal Pressures
兆帕压力下过渡金属和合金的新型亚稳态相和动力学研究
  • 批准号:
    1608682
  • 财政年份:
    2016
  • 资助金额:
    $ 66万
  • 项目类别:
    Standard Grant
Quantification and mapping of metals in solid phases using laser ablation/laser induced breakdown spectroscopy
使用激光烧蚀/激光诱导击穿光谱对固相金属进行定量和绘图
  • 批准号:
    RTI-2016-00265
  • 财政年份:
    2015
  • 资助金额:
    $ 66万
  • 项目类别:
    Research Tools and Instruments
Exotic superconductivity in strongly anisotropic correlatedorganic metals in the vicinity of insulating phases
绝缘相附近强各向异性相关有机金属的奇异超导性
  • 批准号:
    234757034
  • 财政年份:
    2013
  • 资助金额:
    $ 66万
  • 项目类别:
    Research Grants
Frequency-dependent conductivity of charge ordering phases in two-dimensional organic metals: search for the anisotropic dispersion and collective excitations
二维有机金属中电荷排序相的频率相关电导率:寻找各向异性色散和集体激发
  • 批准号:
    54227208
  • 财政年份:
    2008
  • 资助金额:
    $ 66万
  • 项目类别:
    Research Grants
U.S.-China Cooperative Research: Formation and ThermodynamicStability of Metastable Phases in Selected Metals and Alloy Systems
中美合作研究:选定金属和合金体系中亚稳相的形成和热力学稳定性
  • 批准号:
    9423738
  • 财政年份:
    1995
  • 资助金额:
    $ 66万
  • 项目类别:
    Standard Grant
The Formation Mechanism of Reaction-Phases and its Regulation on a Solid-State Bonding Silicon-Nitride Ceramics to Metals
氮化硅陶瓷与金属固相键合反应相的形成机理及其调控
  • 批准号:
    07455294
  • 财政年份:
    1995
  • 资助金额:
    $ 66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synchrotron Topographic Studies of Hydride Phases and the Effect of Hydrogen on Deformation Behavior in Metals
氢化物相的同步加速器形貌研究以及氢对金属变形行为的影响
  • 批准号:
    8506948
  • 财政年份:
    1986
  • 资助金额:
    $ 66万
  • 项目类别:
    Continuing Grant
Plastic Deformation of Nonmetallic Phases Within Ductile Metals
延性金属内非金属相的塑性变形
  • 批准号:
    6008219
  • 财政年份:
    1960
  • 资助金额:
    $ 66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了