CAREER: Extensions of Stochastic Programming: Models, Algorithms, and Applications

职业:随机规划的扩展:模型、算法和应用

基本信息

  • 批准号:
    0133943
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2009-07-31
  • 项目状态:
    已结题

项目摘要

This Faculty Early Career Development (CAREER) award is to study new models, algorithms, and applications of stochastic programs with alternative risk-averse objectives, subjective probabilities, and decision-dependent uncertainties. Although stochastic programming has now evolved as a viable paradigm for planning and decision-making under uncertainty, much of the progress in this area has been made at the expense of some simplifying assumptions. For example, traditional stochastic programming is concerned with optimizing an expected objective function. Other common assumptions include precise knowledge of a static underlying probability distribution. However, these risk ignoring assumptions can be quite undesirable in many practical applications. Unfortunately, these generalizations typically lead to non-convex optimization models. Consequently, traditional decomposition algorithms for (convex) stochastic programs are inapplicable. The research will investigate the integration of decomposition principles within non-convex optimization algorithms in order to attack large-scale instances of these general stochastic programs. The developed concepts will be applied to planning problems in important economic sectors such as process industries, engineering design, and utility industries. The educational component of this career development plan is aimed at popularizing stochastic programming based planning and decision making in engineering education and practice. Towards this goal, user-friendly stochastic programming modeling and solver tools, electronic tutorials, and real world case studies will be developed.The operations research community recognizes Stochastic Programming as a valuable quantitative technique for decision support in the face of uncertainty. However, this tool has not achieved widespread use in practical planning and decision-making. Two reasons for this are: traditional stochastic programming models can often be overly simplistic for real-life applications and the lack of exposure to practical stochastic programming concepts in engineering education. The proposed research program will extend stochastic programming paradigm beyond some of the traditional impractical assumptions. These generalizations will require the development of entirely new stochastic programming models and algorithms, and their application to relevant practical problems. On the education side, user friendly stochastic programming solver, electronic tutorials, and industrial case-studies will be developed to facilitate the introduction of applied stochastic programming concepts in undergraduate and graduate engineering education.
这个教师早期职业发展(CAREER)奖是研究新的模型,算法和随机程序的应用与替代风险规避目标,主观概率和决策相关的不确定性。 虽然随机规划现在已经发展成为一个可行的范例规划和决策下的不确定性,在这一领域取得了很大的进展,在一些简化的假设为代价。例如,传统的随机规划涉及优化期望的目标函数。 其他常见的假设包括静态潜在概率分布的精确知识。然而,这些忽略风险的假设在许多实际应用中可能是非常不可取的。 不幸的是,这些推广通常会导致非凸优化模型。因此,(凸)随机规划的传统分解算法是不适用的。本研究将探讨非凸优化算法中分解原理的整合,以攻击这些一般随机程序的大规模实例。开发的概念将被应用到规划问题,在重要的经济部门,如加工工业,工程设计和公用事业行业。该职业发展计划的教育部分旨在推广基于工程教育和实践中的规划和决策的随机规划。为了实现这一目标,用户友好的随机规划建模和求解工具,电子教程,和真实的世界的案例studies.The运筹学界认识到随机规划作为一个有价值的定量技术,在面对不确定性的决策支持将开发。然而,这一工具尚未在实际规划和决策中得到广泛使用。原因有二:传统的随机规划模型对于现实生活中的应用来说通常过于简单,并且在工程教育中缺乏对实际随机规划概念的了解。建议的研究计划将扩展随机规划范式超越了一些传统的不切实际的假设。这些推广将需要开发全新的随机规划模型和算法,并将其应用于相关的实际问题。在教育方面,将开发用户友好的随机规划求解器,电子教程和工业案例研究,以促进在本科和研究生工程教育中引入应用随机规划概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shabbir Ahmed其他文献

A scenario decomposition algorithm for 0-1 stochastic programs
  • DOI:
    10.1016/j.orl.2013.07.009
  • 发表时间:
    2013-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shabbir Ahmed
  • 通讯作者:
    Shabbir Ahmed
Totally unimodular stochastic programs
完全幺模随机规划
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    N. Kong;A. Schaefer;Shabbir Ahmed
  • 通讯作者:
    Shabbir Ahmed
The real interest parity (RIP) condition states that the interest rate differential between two economies is equivalent to the differential between the forward exchange rate and the spot exchange rate
实际利率平价(RIP)条件规定两个经济体之间的利差等于远期汇率与即期汇率之间的差额
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shabbir Ahmad;Shabbir Ahmed
  • 通讯作者:
    Shabbir Ahmed
Energy Consumption of Lithium-Ion Pouch Cell Manufacturing Plants
锂离子软包电池制造厂的能源消耗
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    K. Knehr;Joseph J. Kubal;SeungRyeol Yoon;HyeongRyul Jeon;Whan Jin Roh;Shabbir Ahmed
  • 通讯作者:
    Shabbir Ahmed
Forbidden Vertices
禁止顶点
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Gustavo Angulo;Shabbir Ahmed;Santanu S. Dey;V. Kaibel
  • 通讯作者:
    V. Kaibel

Shabbir Ahmed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shabbir Ahmed', 18)}}的其他基金

Risk Averse Multistage Stochastic Integer Programming
风险规避多阶段随机整数规划
  • 批准号:
    1633196
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CyberSEES: Type 1: Dynamic Robust Optimization for Emerging Energy Systems
Cyber​​SEES:类型 1:新兴能源系统的动态鲁棒优化
  • 批准号:
    1331426
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Exploiting Submodularity in Integer Programming
在整数规划中利用子模性
  • 批准号:
    1129871
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Integer Programming Under Uncertainty
不确定性下的整数规划
  • 批准号:
    0758234
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Capacity Expansion under Forecast Uncertainty: Stochastic Integer Programming Approaches
预测不确定性下的容量扩展:随机整数规划方法
  • 批准号:
    0099726
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332468
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical analyses on one-bit secret sharing schemes and their extensions
一位秘密共享方案及其扩展的数学分析
  • 批准号:
    23K10979
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multivariable and Higher order extensions of discrete Painlev\'e equaitons
离散 Painlev 方程的多变量和高阶扩展
  • 批准号:
    23K03173
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: characterizing and optimizing extensions of LCDM
RUI:表征和优化 LCDM 的扩展
  • 批准号:
    2308173
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Extensions of matroid Hodge theory
拟阵霍奇理论的扩展
  • 批准号:
    EP/X001229/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Ore extensions of trusses
矿石桁架延伸
  • 批准号:
    2893931
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Rationally designed ribozymes switched-on by nucleotide repeat extensions as potential tools of genetic therapy for repeat expansion disorders.
合理设计的核酶通过核苷酸重复延伸开启,作为重复扩张疾病基因治疗的潜在工具。
  • 批准号:
    479481
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Assessing Tele-Health Outcomes in Multiyear Extensions of Parkinson's Disease Trials-2 (AT-HOME PD-2)
评估帕金森病多年扩展试验中的远程医疗结果 Trials-2 (AT-HOME PD-2)
  • 批准号:
    10658165
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Evaluating Medicaid Postpartum Coverage Extensions through an Equity Lens
通过公平视角评估医疗补助产后覆盖​​范围扩展
  • 批准号:
    10594173
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了