CAREER: Singularities and Microstructure - Multiple Scale Analysis for Nonlinear Partial Differential Equations (PDE), Geometric Problems, and the Physical Sciences

职业:奇点和微观结构 - 非线性偏微分方程 (PDE)、几何问题和物理科学的多尺度分析

基本信息

  • 批准号:
    0135078
  • 负责人:
  • 金额:
    $ 30.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2004-12-31
  • 项目状态:
    已结题

项目摘要

DMS Award AbstractAward #: 0135078PI: Venkataramani, Shankar Institution: University of ChicagoProgram: Applied MathematicsProgram Manager: Catherine MavriplisTitle: CAREER: Singularities and Microstructure - Multiple Scale Analysis for Nonlinear PDE, Geometric Problems, and the Physical SciencesThere exist a variety of tools for studying multiple scale behaviorsin nonlinear systems, and the method of choice for a particularproblem often depends on whether the investigator is an analyst, anapplied mathematician or a physicist. An important goal is toeffectively merge the various approaches, and develop new ways ofthinking about multi-scale problems. To this end, this project focuseson investigating five interdisciplinary problems, using ideas fromfunctional analysis, geometry, topology, matched asymptotics andscaling arguments, in conjunction with numerical simulations. Theseproblems are (1) Generalized crumpling: Combining functional analyticmethods with geometric/topological ideas to study singularities andmicrostructure; (2) Blowup in Parabolic PDEs: Applying Morse theory tothe dynamics of blowup solutions; (3) Dynamics of microstructure:Studying global bifurcations involving the change of microstructure ina model system; (4) Pattern formation and non-equilibrium phasetransitions: Investigating multiple scale behaviors in nonlinearsystems in the presence of noise; and (5) Topological transitions influid interfaces: Using tools from PDE to investigate topologicaltransitions in 2 fluid systems.Many real world systems are interesting precisely because they exhibitdifferent behaviors on different scales. This is certainly true forliving organisms, geological and geophysical systems, technologicallyimportant composite materials and even social structures andhierarchies. Thus researchers across many disciplines grapple with thefollowing two questions, which are the essence of multiple scaleanalysis: (1) How does the large scale (macroscopic) behavior emergeout of the collective behavior of the small scale (microscopic)units?, and (2) What are the rules governing the large scale behavior,and how does this influence the behavior of the small scale units? Theresearch component of this project studies these questions in amathematical setting through problems that arise in material scienceand in physics. The overall goal is to meld together a variety oftechniques to develop tools that can successfully handle complexreal-world multiple scale problems. This is combined with anintegrated approach to pedagogy, that features a strong involvement inundergraduate and graduate research, development of researchopportunities for groups that are under-represented in mathematics andthe physical sciences, curriculum development both at the graduate andthe undergraduate level, and development of materials for scientificoutreach to the general public.Date: December 17, 2001
DMS Award AbstractAward #: 0135078 PI: Venkataramani,Shankar机构: 芝加哥大学课程: 应用数学项目经理:Catherine Mavriplis职务:职业:奇异性和微观结构-非线性偏微分方程、几何问题和物理科学的多尺度分析存在着各种研究非线性系统多尺度行为的工具,而对特定问题的选择方法往往取决于研究者是分析师、应用数学家还是物理学家。一个重要的目标是有效地合并各种方法,并开发新的方法来思考多尺度问题。为此,本项目重点研究五个跨学科的问题,利用泛函分析、几何、拓扑、匹配渐近和标度参数的思想,结合数值模拟。这些问题是:(1)广义褶皱:将泛函分析方法与几何/拓扑思想相结合,研究奇异性和微结构;(2)抛物偏微分方程中的爆破:将莫尔斯理论应用于爆破解的动力学;(3)微结构动力学:研究模型系统中涉及微结构变化的全局分叉;(4)图案形成和非平衡相变:研究噪声存在下非线性系统的多尺度行为;(5)流体界面的拓扑转变:利用偏微分方程的工具研究二维流体系统的拓扑转变。对于生物体、地质和地球物理系统、重要的技术复合材料,甚至社会结构和等级制度来说,这当然是正确的。因此,许多学科的研究人员都在努力解决以下两个问题,这两个问题是多尺度分析的本质:(1)大尺度(宏观)行为如何从小尺度(微观)单元的集体行为中出现?(2)大尺度行为的规则是什么,它如何影响小尺度单元的行为?该项目的研究部分通过材料科学和物理学中出现的问题在数学环境中研究这些问题。总体目标是将各种技术融合在一起,以开发能够成功处理复杂现实世界多尺度问题的工具。这是与一个综合的方法相结合的教学法,其特点是强烈参与本科和研究生的研究,为那些在数学和物理科学,在研究生和本科水平的课程开发,并为科学推广到广大公众的材料开发代表性不足的群体的研究机会的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shankar Venkataramani其他文献

Defects and boundary layers in non-Euclidean plates
非欧几里得板中的缺陷和边界层
  • DOI:
    10.1088/0951-7715/25/12/3553
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    John A Gemmer;Shankar Venkataramani
  • 通讯作者:
    Shankar Venkataramani

Shankar Venkataramani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shankar Venkataramani', 18)}}的其他基金

NSF-BSF: Nonlinearity, Randomness, and Dynamics: Vistas into the Extreme Mechanics of Non-Euclidean Sheets
NSF-BSF:非线性、随机性和动力学:非欧几里得片的极端力学展望
  • 批准号:
    2108124
  • 财政年份:
    2021
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Collective Behavior and Patterning of Topological Defects: From String Theory to Crystal Plasticity
合作研究:GCR:拓扑缺陷的集体行为和模式:从弦理论到晶体可塑性
  • 批准号:
    2020915
  • 财政年份:
    2020
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Continuing Grant
Exotic Continua: Geometry, Topology and Mechanics in Soft Matter
奇异的连续体:软物质中的几何、拓扑和力学
  • 批准号:
    1923922
  • 财政年份:
    2020
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Lagrangian data blending for hurricane tracking and source estimation
协作研究:用于飓风跟踪和源估计的拉格朗日数据混合
  • 批准号:
    1109856
  • 财政年份:
    2011
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Standard Grant
Developing Robust Techniques for the Analysis of Multiple-Scale Behaviors
开发用于分析多尺度行为的稳健技术
  • 批准号:
    0807501
  • 财政年份:
    2008
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Standard Grant
CAREER: Singularities and Microstructure - Multiple Scale Analysis for Nonlinear Partial Differential Equations (PDE), Geometric Problems, and the Physical Sciences
职业:奇点和微观结构 - 非线性偏微分方程 (PDE)、几何问题和物理科学的多尺度分析
  • 批准号:
    0454828
  • 财政年份:
    2004
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
  • 批准号:
    2422557
  • 财政年份:
    2024
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
  • 批准号:
    DP240101934
  • 财政年份:
    2024
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Discovery Projects
Conference: Singularities in Ann Arbor
会议:安娜堡的奇点
  • 批准号:
    2401041
  • 财政年份:
    2024
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Standard Grant
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
  • 批准号:
    2907441
  • 财政年份:
    2024
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Studentship
Interaction of singularities and number theory
奇点与数论的相互作用
  • 批准号:
    23H01070
  • 财政年份:
    2023
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Automatic classification and recognition of singularities and its application
奇点自动分类识别及其应用
  • 批准号:
    23K03123
  • 财政年份:
    2023
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
  • 批准号:
    23K03138
  • 财政年份:
    2023
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis on delta function type singularities in nonlinear heat equations
非线性热方程中δ函数型奇点分析
  • 批准号:
    23K03161
  • 财政年份:
    2023
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Fellowship
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 30.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了