Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
基本信息
- 批准号:DP240101934
- 负责人:
- 金额:$ 31.71万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2024
- 资助国家:澳大利亚
- 起止时间:2024-02-02 至 2027-02-01
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Moduli theory, the modern classification theory of mathematical objects, is a branch of algebraic geometry with applications in wide-ranging areas from the theoretical high-energy physics (dark matter and Higgs boson) to data encryption and correction via cryptography. The aim of this project is to resolve central open problems in this theory. This will be achieved by developing new methods and establishing deeper connections between various dynamic branches of these fields. By undertaking research at the forefronts of these highly active areas, this project will both strengthen the current expertise within the Australian mathematical community and precipitate the advance of Australian high-tech industries.
模理论是数学对象的现代分类理论,是代数几何的一个分支,其应用范围广泛,从理论高能物理(暗物质和希格斯玻色子)到通过密码学进行的数据加密和校正。本项目的目的是解决这一理论中的中心开放问题。这将通过开发新方法和在这些领域的各种动态分支之间建立更深层次的联系来实现。通过在这些高度活跃的领域的前沿开展研究,该项目将加强澳大利亚数学界目前的专业知识,并促进澳大利亚高科技产业的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr Behrouz Taji其他文献
Dr Behrouz Taji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Ricci Flows through Singularities and Ricci Flows with Bounded Scalar Curvature
穿过奇点的里奇流和具有有界标量曲率的里奇流
- 批准号:
1906500 - 财政年份:2019
- 资助金额:
$ 31.71万 - 项目类别:
Continuing Grant
Study on rheology of non-Newtonian two-phase flows through singularities in microchannels
微通道奇点非牛顿两相流流变学研究
- 批准号:
19K04172 - 财政年份:2019
- 资助金额:
$ 31.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of the Mathematical Structure of Scattering Amplitudes Through Their Singularities
奇点散射振幅的数学结构研究
- 批准号:
1818299 - 财政年份:2016
- 资助金额:
$ 31.71万 - 项目类别:
Studentship
Spontaneous formation of singularities through critical collapse
通过临界崩溃自发形成奇点
- 批准号:
1412140 - 财政年份:2014
- 资助金额:
$ 31.71万 - 项目类别:
Continuing Grant
Collaborative Research: Study of turbulence in physical systems through complex singularities and determining modes
合作研究:通过复杂奇点和确定模式研究物理系统中的湍流
- 批准号:
1425877 - 财政年份:2013
- 资助金额:
$ 31.71万 - 项目类别:
Standard Grant
Collaborative Research: Study of turbulence in physical systems through complex singularities and determining modes
合作研究:通过复杂奇点和确定模式研究物理系统中的湍流
- 批准号:
1109784 - 财政年份:2011
- 资助金额:
$ 31.71万 - 项目类别:
Standard Grant
Collaborative Proposal: Study of turbulence in physical systems through complex singularities and determining modes
合作提案:通过复杂奇点和确定模式研究物理系统中的湍流
- 批准号:
1109638 - 财政年份:2011
- 资助金额:
$ 31.71万 - 项目类别:
Standard Grant
Collaborative Research: Study of Turbulence in Physical Systems Through Complex Singularities and Determining Modes
合作研究:通过复杂奇点和确定模式研究物理系统中的湍流
- 批准号:
1109645 - 财政年份:2011
- 资助金额:
$ 31.71万 - 项目类别:
Standard Grant
Investigation of characteristics of two-phase flows through singularities in microchannels
通过微通道奇点的两相流特性研究
- 批准号:
23560199 - 财政年份:2011
- 资助金额:
$ 31.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Study of turbulence in physical systems through complex singularities and determining modes
合作研究:通过复杂奇点和确定模式研究物理系统中的湍流
- 批准号:
1109532 - 财政年份:2011
- 资助金额:
$ 31.71万 - 项目类别:
Standard Grant