FRG: Collaborative Research: Fully nonlinear, three-dimensional, surface water waves in arbitrary depth
FRG:协作研究:任意深度的完全非线性、三维、表面水波
基本信息
- 批准号:0139093
- 负责人:
- 金额:$ 4.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-15 至 2003-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overall objectives of this work are to develop a thorough understanding of three-dimensional water waves of finite amplitude, and ultimately to develop a practical model to describe these waves efficiently. A model that is both accurate and computationally efficient could have many practical applications. Specific problems to be addressed are: (1) the existence and stability of three-dimensional, doubly-periodic, traveling water-wave patterns, through the full range of depths; (2) the prevalence of hexagonal, rectangular or crescent-shaped waves (or other multiply periodic wave patterns) among ocean waves; (3) the long-wave and modulational descriptions of water waves, and the subsequent stability analyses that are feasible in these cases; (4) the design and implementation of algorithms to make practical use of exact solutions of asymptotic models in shallow and deep water; (5) the relation between the detailed dynamics of three-dimensional, nonlinear waves and some commonly used ocean-wave transport models; and (6) the impact of a detailed local description of nonlinear wave dynamics on these transport models, in the presence of large amplitude nonlinear waves or under conditions of nonlinear wave focusing. These problems will be studied using analysis, computation, asymptotics, and algebraic geometry, involving the full equations and approximate models, all in conjunction with state-of-the-art physical experiments.The destructive force of large-amplitude ocean waves is well known. Large-scale ocean waves have a major impact on the design of ocean-going ships, of off-shore oil platforms, and of other structures in a coastal environment. These waves also impact the scheduling and routing of shipping patterns, and they strongly affect air-sea transport processes. Yet most theoretical models of ocean waves now in use are based on waves of small amplitude. In this investigation we focus on developing a thorough understanding of large-amplitude waves. The ultimate goal is to develop a practical, mathematical model that may be used operationally in the applications listed above. In particular, the investigators plan to build on their recent work in which they have observed certain coherent patterns of large-amplitude waves. They have observed these patterns in laboratory experiments, as solutions to the well-known equations of water waves, and as solutions to other equations that are (more) approximate models of water waves. Their work involves a variety of mathematical and computational tools as well as state-of-the-art laboratory experiments. In the present work the investigators will combine all of their tools to understand and describe these coherent patterns and to use them as the building blocks for a practical model of ocean waves.
这项工作的总体目标是深入了解有限振幅的三维水波,并最终开发一个实用的模型来有效地描述这些波。一个既准确又计算高效的模型可以有许多实际应用。需要解决的具体问题是:(1)三维双周期行进水波模式在全深度范围内的存在性和稳定性; (2)海浪中六边形、矩形或新月形波浪(或其他多重周期性波浪模式)的盛行程度; (3) 水波的长波和调制描述,以及在这些情况下可行的后续稳定性分析; (4) 算法的设计和实现,以实际应用浅水和深水渐近模型的精确解; (5)三维非线性波浪的详细动力学与一些常用的海浪传输模型之间的关系; (6) 在存在大幅度非线性波或非线性波聚焦的情况下,非线性波动力学的详细局部描述对这些输运模型的影响。这些问题将使用分析、计算、渐近和代数几何进行研究,涉及完整的方程和近似模型,所有这些都与最先进的物理实验相结合。大振幅海浪的破坏力是众所周知的。大规模海浪对远洋船舶、海上石油平台和沿海环境中的其他结构的设计产生重大影响。 这些波浪还会影响航运模式的调度和路线,并强烈影响海空运输流程。然而,目前使用的大多数海浪理论模型都是基于小振幅的波浪。在这项研究中,我们的重点是全面了解大振幅波。最终目标是开发一个实用的数学模型,可以在上面列出的应用中使用。特别是,研究人员计划以他们最近的工作为基础,在这些工作中他们观察到了大振幅波的某些相干模式。他们在实验室实验中观察到这些模式,作为众所周知的水波方程的解,以及作为(更)近似水波模型的其他方程的解。他们的工作涉及各种数学和计算工具以及最先进的实验室实验。在目前的工作中,研究人员将结合所有的工具来理解和描述这些连贯的模式,并将它们用作实际海浪模型的构建块。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernard Deconinck其他文献
Book Reviews Embedded Robotics: Mobile Robot De- Sign and Applications with Embedded Systems. Second Edition
书评嵌入式机器人:移动机器人设计和嵌入式系统应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Robert E O 'malley;Willy Sarlet;Optimization By;Hang T Lau;Chapman;Robert A. Beezer;Scientists By;A. Polyanin;A. V. Manzhirov;Hall Chapman;Crc;Boca;References;I. Bronshtein;K. A. Semendya;A D Polyanin;V. Zaitsev;A. Moussiaux;A. V. Manzhirov;Bernard Deconinck - 通讯作者:
Bernard Deconinck
Bernard Deconinck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernard Deconinck', 18)}}的其他基金
Applied Mathematics: The Next 50 Years
应用数学:未来 50 年
- 批准号:
1853371 - 财政年份:2019
- 资助金额:
$ 4.87万 - 项目类别:
Standard Grant
Collaborative Research: Riemann-Hilbert Problems and Riemann Surfaces: Computations and Applications
协作研究:黎曼-希尔伯特问题和黎曼曲面:计算和应用
- 批准号:
1522677 - 财政年份:2015
- 资助金额:
$ 4.87万 - 项目类别:
Continuing Grant
Workshop: The Stability of Coherent Structures and Patterns
研讨会:相干结构和模式的稳定性
- 批准号:
1211184 - 财政年份:2012
- 资助金额:
$ 4.87万 - 项目类别:
Standard Grant
New Boundary-Value Problem Techniques for Nonlinear Wave Problems
非线性波问题的新边值问题技术
- 批准号:
1008001 - 财政年份:2010
- 资助金额:
$ 4.87万 - 项目类别:
Standard Grant
Mathematical Methods for Nonlinear Wave Equations
非线性波动方程的数学方法
- 批准号:
0604546 - 财政年份:2006
- 资助金额:
$ 4.87万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fully nonlinear, three-dimensional, surface water waves in arbitrary depth
FRG:协作研究:任意深度的完全非线性、三维、表面水波
- 批准号:
0351466 - 财政年份:2003
- 资助金额:
$ 4.87万 - 项目类别:
Standard Grant
Integrable and Near-Integrable Systems and Their Applications
可积和准可积系统及其应用
- 批准号:
0071568 - 财政年份:2000
- 资助金额:
$ 4.87万 - 项目类别:
Fellowship Award
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 4.87万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 4.87万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 4.87万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 4.87万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 4.87万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 4.87万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 4.87万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 4.87万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 4.87万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 4.87万 - 项目类别:
Continuing Grant














{{item.name}}会员




