New Boundary-Value Problem Techniques for Nonlinear Wave Problems
非线性波问题的新边值问题技术
基本信息
- 批准号:1008001
- 负责人:
- 金额:$ 20.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI and his students and collaborators will further develop the new methods of Athanassios Fokas for boundary value problems to investigate two different problems. First, the periodic problem for integrable differential equations will be revisited using this new approach, with the goal of obtaining a more efficient (from the point of view of asymptotics and numerics) answer than the current approach. Second, the PI and his students will use the new approach to analytically investigate the linear stability of different problems posed on non-standard domains such as the half-line or finite intervals with prescribed boundary conditions. In addition, the new formulation of the water wave problem due to Ablowitz, Fokas and Muslimmani will be used to initiate the solution of the inverse water wave problem: the problem of recovering the bottom topography using measurements of the water wave surface.Using and expanding on new methods for studying problems with prescribed input at their boundaries, the PI and his collaborators and students will investigate problems describing a wide range of phenomena. Some of these application areas are relevant for waves on the surface of the ocean (tsunamis and rogue waves), while others impact engineering applications with wide sociological impact such as high-speed communication (nonlinear optics) or help with our understanding of current environmental problems (smog formation and dispersal). Lastly, the PI and his research group will initiate a new approach to determine the surface at the bottom of the near-shore ocean from remote sensing measurements of the surface. This work has direct commercial and defense naval consequences. The PI is committed to the training of the next generation of US scientists, on a local scale by working with students, and on a more global scale by preparing a text book describing the techniques used.
PI和他的学生和合作者将进一步发展Athanassios Fokas用于边值问题的新方法,以研究两个不同的问题。首先,可积微分方程的周期性问题将使用这种新方法重新审视,目标是获得比当前方法更有效的(从渐近和数值的角度来看)答案。 第二,PI和他的学生将使用新的方法来分析研究非标准域上的不同问题的线性稳定性,例如具有指定边界条件的半直线或有限区间。此外,由于Ablowitz,Fokas和Muslimmani的水波问题的新公式将用于启动逆水波问题的解决方案:利用水波面测量恢复海底地形的问题。使用和扩展新方法研究在边界处具有规定输入的问题,PI和他的合作者和学生将研究描述广泛现象的问题。其中一些应用领域与海洋表面的波浪(海啸和流氓波)有关,而另一些则影响具有广泛社会影响的工程应用,如高速通信(非线性光学)或帮助我们理解当前的环境问题(烟雾形成和扩散)。最后,PI和他的研究小组将启动一种新的方法,通过对表面的遥感测量来确定近岸海洋底部的表面。这项工作有直接的商业和国防海军的后果。PI致力于培养下一代美国科学家,在当地范围内与学生合作,并在全球范围内编写一本描述所使用技术的教科书。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bernard Deconinck其他文献
Book Reviews Embedded Robotics: Mobile Robot De- Sign and Applications with Embedded Systems. Second Edition
书评嵌入式机器人:移动机器人设计和嵌入式系统应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Robert E O 'malley;Willy Sarlet;Optimization By;Hang T Lau;Chapman;Robert A. Beezer;Scientists By;A. Polyanin;A. V. Manzhirov;Hall Chapman;Crc;Boca;References;I. Bronshtein;K. A. Semendya;A D Polyanin;V. Zaitsev;A. Moussiaux;A. V. Manzhirov;Bernard Deconinck - 通讯作者:
Bernard Deconinck
Bernard Deconinck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bernard Deconinck', 18)}}的其他基金
Applied Mathematics: The Next 50 Years
应用数学:未来 50 年
- 批准号:
1853371 - 财政年份:2019
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
Collaborative Research: Riemann-Hilbert Problems and Riemann Surfaces: Computations and Applications
协作研究:黎曼-希尔伯特问题和黎曼曲面:计算和应用
- 批准号:
1522677 - 财政年份:2015
- 资助金额:
$ 20.75万 - 项目类别:
Continuing Grant
Workshop: The Stability of Coherent Structures and Patterns
研讨会:相干结构和模式的稳定性
- 批准号:
1211184 - 财政年份:2012
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
Mathematical Methods for Nonlinear Wave Equations
非线性波动方程的数学方法
- 批准号:
0604546 - 财政年份:2006
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fully nonlinear, three-dimensional, surface water waves in arbitrary depth
FRG:协作研究:任意深度的完全非线性、三维、表面水波
- 批准号:
0351466 - 财政年份:2003
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fully nonlinear, three-dimensional, surface water waves in arbitrary depth
FRG:协作研究:任意深度的完全非线性、三维、表面水波
- 批准号:
0139093 - 财政年份:2002
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
Integrable and Near-Integrable Systems and Their Applications
可积和准可积系统及其应用
- 批准号:
0071568 - 财政年份:2000
- 资助金额:
$ 20.75万 - 项目类别:
Fellowship Award
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
- 批准号:
EP/Y021983/1 - 财政年份:2024
- 资助金额:
$ 20.75万 - 项目类别:
Research Grant
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
Geometric Boundary Value Problems in General Relativity
广义相对论中的几何边值问题
- 批准号:
2304966 - 财政年份:2023
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
Mathematical analysis of the initial value boundary value problem of viscous flows with hyperbolic effects
具有双曲效应的粘性流初值边值问题的数学分析
- 批准号:
22K03374 - 财政年份:2022
- 资助金额:
$ 20.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Analysis of Initial and Boundary Value Problems
LEAPS-MPS:初始值和边值问题的分析
- 批准号:
2247019 - 财政年份:2022
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
LEAPS-MPS: Analysis of Initial and Boundary Value Problems
LEAPS-MPS:初始值和边值问题的分析
- 批准号:
2213427 - 财政年份:2022
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
Using Exercise Boundary Fitting and Neural Networks to Value Real Options
使用运动边界拟合和神经网络来评估实物期权
- 批准号:
561980-2021 - 财政年份:2021
- 资助金额:
$ 20.75万 - 项目类别:
University Undergraduate Student Research Awards
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
- 批准号:
2137305 - 财政年份:2021
- 资助金额:
$ 20.75万 - 项目类别:
Standard Grant
Research on the well-posedness, regularity, and justification of numerical methods for fluid problems and related boundary-value problems
流体问题及相关边值问题数值方法的适定性、规律性和合理性研究
- 批准号:
20K14357 - 财政年份:2020
- 资助金额:
$ 20.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advancement in viscosity solution theory: asymptotic and boundary value problems
粘度解理论的进展:渐近问题和边值问题
- 批准号:
20K03688 - 财政年份:2020
- 资助金额:
$ 20.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)