FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
基本信息
- 批准号:0139783
- 负责人:
- 金额:$ 10.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
FRG Collaborative ProposalPROPOSAL NUMBER PI INSTITUTION0139759 Benedetto University of Maryland, lead PI0139740 Aldroubi Vanderbilt University0139473 Jorgensen University of Iowa0139261 Heil, Wang Georgia Institute of Technology0139366 Baggett Univ. of Colorado0139783 Olafsson Lousiana State Univ.0139386 Larson Texas A&MABSTRACT:Fundamental problems are addressed in wavelet theory, non-uniformsampling, frames, and the theory of spectral-tile duality. Theseproblems are inextricably interwoven by concept andtechnique. Operator theory provides the major unifying framework,combined with an integration of ideas from a diverse spectrum ofmathematics including classical Fourier analysis, noncommutativeharmonic analysis, representation theory, operator algebras,approximation theory, and signal processing. For example, theconstruction, implementation, and ensuing theory of single dyadicorthonormal wavelets in Euclidean space requires significant inputfrom all of these disciplines as well as deep spectral-tile results.There is intrinsic mathematical importance in the aforementioned problems, and the solutions to be formulated have broad and creative implications, both for mathematics and for applications in engineering and physics. The topics of this project have direct bearing on fast acquisition and motion problems in MRI, as well as in formulating algorithms for compression and noise reduction by means of proper cochlear modelling. There are furtherapplications in quantum computing and image processing, and the development of non-uniform sampling strategies by this project play a role in state of the art A/D conversion methods used in multifunction RF systems. These interdisciplinary applications depending on modern mathematical analysis have educational implications in terms of cross-fertilization of ideas and researchopportunities for graduate students.
0139759马里兰贝尼代托大学,领衔PI0139740阿尔德鲁比·范德比尔特大学0139473爱荷华州约根森大学,0139261黑尔,王乔治亚理工学院0139366巴格特大学。0139386拉森德克萨斯A&A;MABSTRACT:在小波理论、非均匀采样、框架和光谱-瓦片对偶理论中解决了基本问题。这些问题由概念和技术密不可分地交织在一起。算子理论提供了主要的统一框架,结合了不同数学领域的思想,包括经典傅立叶分析、非对易调和分析、表示论、算子代数、逼近理论和信号处理。例如,欧氏空间中单双正交小波的构造、实现和随后的理论需要所有这些学科的大量输入以及深谱瓦片结果。上述问题具有内在的数学重要性,所要表述的解具有广泛和创造性的含义,无论是对于数学还是在工程和物理中的应用。该项目的主题直接关系到磁共振成像中的快速捕获和运动问题,以及通过适当的耳蜗建模来制定压缩和降噪的算法。在量子计算和图像处理方面还有更多的应用,本项目开发的非均匀采样策略对多功能射频系统中最先进的A/D转换方法起到了一定的作用。这些依赖于现代数学分析的跨学科应用在思想的交叉培养和研究生的研究机会方面具有教育意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gestur Olafsson其他文献
LSU Digital Commons LSU Digital Commons A local Paley-Wiener theorem for compact symmetric spaces A local Paley-Wiener theorem for compact symmetric spaces
LSU Digital Commons LSU Digital Commons 紧致对称空间的局部佩利-维纳定理 紧致对称空间的局部佩利-维纳定理
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Gestur Olafsson;Henrik Schlichtkrull - 通讯作者:
Henrik Schlichtkrull
Gestur Olafsson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gestur Olafsson', 18)}}的其他基金
Spring Mini Course in Analysis and Geometry
分析与几何春季迷你课程
- 批准号:
1800823 - 财政年份:2018
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Representation Theory and Harmonic Analysis on Homogeneous Spaces
齐次空间的表示论与调和分析
- 批准号:
1101337 - 财政年份:2011
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
Geometry and harmonic analysis related to symmetric spaces
与对称空间相关的几何和调和分析
- 批准号:
0801010 - 财政年份:2008
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
Louisiana State University VIGRE Proposal EMSW21-VIGRE
路易斯安那州立大学 VIGRE 提案 EMSW21-VIGRE
- 批准号:
0739382 - 财政年份:2008
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
Workshop on Harmonic Analysis and Applications
谐波分析及应用研讨会
- 批准号:
0637383 - 财政年份:2006
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
Harmonic Analysis on Lie Groups and Spectral Symmetry
李群和谱对称性的调和分析
- 批准号:
0070607 - 财政年份:2000
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
Midwest Geometry Conference, 1998-2001
中西部几何会议,1998-2001
- 批准号:
9803773 - 财政年份:1998
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
U.S.-Germany Cooperative Research on Spectral Theory
美德光谱理论合作研究
- 批准号:
9722779 - 财政年份:1997
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 10.55万 - 项目类别:
Continuing Grant














{{item.name}}会员




