Workshop on Harmonic Analysis and Applications

谐波分析及应用研讨会

基本信息

  • 批准号:
    0637383
  • 负责人:
  • 金额:
    $ 1.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-11-15 至 2007-10-31
  • 项目状态:
    已结题

项目摘要

AbstractOlafssonThis project deals with a variety of problems in modern harmonic analysis.It combines ideas and problems from abstract harmonic analysisand representation theory on Lie groups related tosymmetric spaces with tools and questions wellknown from classical Euclidean harmonic analysis. Our list ofproblems includes a detailed study of series of representations occurringin the regular representation on Pseudo-Riemannian symmetric spaces and, inparticular, geometric realizations of those representations usingtools from complex analysis. Part of this study is the interplay betweenspecial functions and the spherical character of representationsoccurring discretely in the regular representation.Our study also includes compactificationof symmetric spaces, application of representation theory to special functions,in particular, Laguerre functions and polynomials.On the other hand the proposal includes problems related to wavelet theory,function spaces on cones and other symmetric spaces, in particular,Besov spaces. The proposed work combines methods and ideas from several areasof mathematics: Complex analysis, group actions on manifolds and functionspaces, in particular, Besov, Fock, and Hardy spaces, and classical harmonic analysis. It even borrows some ideas from applied mathematics. Parts of the proposed work will bedone in collaboration with our students as well as specialists in USA and Europe.Harmonic analysis has its origin in the work of Fourier on the heat equation,which led him to consider the expansion of a periodic functions into superpositionof trigonometric functions. This can be interpreted either as the spectraldecomposition of the differential operators with constant coefficients, oras decomposition of regular representation into irreducible representations.In short, the subject of harmonic analysis is to study functions orfunction spaces by decomposing the functions into simpler functions. Inthe theory of differential equations this decomposition means to writean arbitrary functions as a sum or integral of eigenfunctions. In severalapplications, as in image processing, the wavelets shows up as the basicatoms used to approximate or represent the signal. If we have a symmetrygroup acting on the system, then we would like to write an arbitraryfunction as a sum of functions that transforms in a simple and controllableway under the symmetry group, leading to representation theory ofthe symmetry group. Both aspects usually involve the study of integraltransforms and the corresponding kernel function.
摘要 Olafsson 该项目处理现代调和分析中的各种问题。它将抽象调和分析和对称空间相关李群表示论的思想和问题与经典欧几里得调和分析中众所周知的工具和问题结合起来。我们的问题列表包括对伪黎曼对称空间上的正则表示中出现的一系列表示的详细研究,特别是使用复分析工具对这些表示的几何实现。这项研究的一部分是特殊函数和在正则表示中离散出现的表示的球形特征之间的相互作用。我们的研究还包括对称空间的紧致化、表示论在特殊函数(特别是拉盖尔函数和多项式)中的应用。另一方面,该提案包括与小波理论、锥体上的函数空间和其他对称空间(特别是贝索夫空间)相关的问题。拟议的工作结合了多个数学领域的方法和思想:复数分析、流形和函数空间(特别是贝索夫空间、福克空间和哈代空间)的群作用,以及经典调和分析。它甚至借用了应用数学的一些思想。拟议工作的部分内容将与我们的学生以及美国和欧洲的专家合作完成。调和分析起源于傅里叶关于热方程的工作,这使他考虑将周期函数展开为三角函数的叠加。这可以解释为具有常数系数的微分算子的谱分解,也可以解释为将正则表示分解为不可约表示。简而言之,调和分析的主题是通过将函数分解为更简单的函数来研究函数或函数空间。在微分方程理论中,这种分解意味着将任意函数写为特征函数的和或积分。在一些应用中,例如在图像处理中,小波显示为用于近似或表示信号的基本原子。如果我们有一个作用于系统的对称群,那么我们希望将任意函数写为在对称群下以简单且可控的方式变换的函数之和,从而产生对称群的表示论。这两个方面通常都涉及积分变换和相应核函数的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gestur Olafsson其他文献

LSU Digital Commons LSU Digital Commons A local Paley-Wiener theorem for compact symmetric spaces A local Paley-Wiener theorem for compact symmetric spaces
LSU Digital Commons LSU Digital Commons 紧致对称空间的局部佩利-维纳定理 紧致对称空间的局部佩利-维纳定理
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gestur Olafsson;Henrik Schlichtkrull
  • 通讯作者:
    Henrik Schlichtkrull

Gestur Olafsson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gestur Olafsson', 18)}}的其他基金

Spring Mini Course in Analysis and Geometry
分析与几何春季迷你课程
  • 批准号:
    1800823
  • 财政年份:
    2018
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
Representation Theory and Harmonic Analysis on Homogeneous Spaces
齐次空间的表示论与调和分析
  • 批准号:
    1101337
  • 财政年份:
    2011
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Continuing Grant
Workshop in Analysis and Geometry
分析与几何研讨会
  • 批准号:
    1048571
  • 财政年份:
    2010
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
Geometry and harmonic analysis related to symmetric spaces
与对称空间相关的几何和调和分析
  • 批准号:
    0801010
  • 财政年份:
    2008
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Continuing Grant
Louisiana State University VIGRE Proposal EMSW21-VIGRE
路易斯安那州立大学 VIGRE 提案 EMSW21-VIGRE
  • 批准号:
    0739382
  • 财政年份:
    2008
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Continuing Grant
Harmonic analysis and Lie groups
调和分析和李群
  • 批准号:
    0402068
  • 财政年份:
    2004
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
  • 批准号:
    0139783
  • 财政年份:
    2002
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Continuing Grant
Harmonic Analysis on Lie Groups and Spectral Symmetry
李群和谱对称性的调和分析
  • 批准号:
    0070607
  • 财政年份:
    2000
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Continuing Grant
Midwest Geometry Conference, 1998-2001
中西部几何会议,1998-2001
  • 批准号:
    9803773
  • 财政年份:
    1998
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
U.S.-Germany Cooperative Research on Spectral Theory
美德光谱理论合作研究
  • 批准号:
    9722779
  • 财政年份:
    1997
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant

相似国自然基金

算子方法在Harmonic数恒等式中的应用
  • 批准号:
    11201241
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Ricci-Harmonic流的长时间存在性
  • 批准号:
    11126190
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
Some problems in harmonic analysis
谐波分析中的一些问题
  • 批准号:
    2350101
  • 财政年份:
    2024
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
Conference: Madison Lectures in Harmonic Analysis
会议:麦迪逊谐波分析讲座
  • 批准号:
    2337344
  • 财政年份:
    2024
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
  • 批准号:
    2348797
  • 财政年份:
    2024
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
  • 批准号:
    2236493
  • 财政年份:
    2023
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Continuing Grant
Conference: Harmonic and Complex Analysis: Modern and Classical
会议:调和与复分析:现代与古典
  • 批准号:
    2308417
  • 财政年份:
    2023
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
  • 批准号:
    2247067
  • 财政年份:
    2023
  • 资助金额:
    $ 1.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了