L-functions of Several Complex Variables and Automorphic Forms
多个复变量和自守形式的 L 函数
基本信息
- 批准号:0140635
- 负责人:
- 金额:$ 10.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research of Imamoglu focuses on the analytic theory of L-series of several complex variables. The PI and her collaborators have recently defined Rankin-Selberg Dirichlet series of several complex variables attached to Siegel cusp forms. She proposes to exploit the analytic properties of these series to establish non-vanishing results for special values of Rankin-Selberg convolutions of Fourier_Jacobi coefficients of Siegel forms and to improve bounds for their classical Fourier coefficients. She also proposes to investigate a possible generalization of the classical Dedekind zeta function of a number field to a zeta function of several complex variables.The investigations of this proposal belong to number theory, which is a branch of mathematics that deals with problems involving whole numbers. Mathematicians have discovered that many of the important properties of whole numbers can be encoded into certain objects called "L-functions". These L-functions have their origin in the study of calculus but our understanding of their fundamental properties are far from complete. The PI and her collaborators proposes to investigate the analytic properties of these functions to fill in some of the gaps in our knowledge.
Imamoglu的研究集中在多复变量L-级数的解析理论。PI和她的合作者最近定义了 附于Siegel尖点形式的多复变量的Rankin-Selberg Dirichlet级数。她建议利用这些系列的分析性质来建立Siegel形式的Fourier_Jacobi系数的Rankin-Selberg卷积的特殊值的非零结果,并改进其经典Fourier系数的界。她还建议调查一个可能的推广经典的戴德金zeta函数的一个领域,以zeta函数的几个复变数。调查这一建议属于数论,这是一个分支的数学,处理问题,涉及整数。数学家们已经发现,整数的许多重要性质可以编码到某些称为“L函数”的对象中。这些L-函数起源于微积分的研究,但我们对它们的基本性质的理解还远未完成。PI和她的合作者建议研究这些函数的分析性质,以填补我们知识中的一些空白。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Stopple其他文献
A Heat Kernel Associated to Ramanujan's Tau Function
- DOI:
10.1023/a:1009886102576 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:0.700
- 作者:
James Lee Hafner;Jeffrey Stopple - 通讯作者:
Jeffrey Stopple
Jeffrey Stopple的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Stopple', 18)}}的其他基金
Problems in Analytic Theory of L-functions and Automorphic Forms
L-函数和自同构形式的解析理论问题
- 批准号:
9700488 - 财政年份:1997
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Mathematical Sciences: The Twisted Trace Formula and Cubic Non Normal Extensions
数学科学:扭曲迹公式和三次非正规扩展
- 批准号:
9201741 - 财政年份:1992
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
相似海外基金
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
- 批准号:
2323531 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
- 批准号:
2152487 - 财政年份:2022
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Research on analytic functions of several complex variables appearing in number theory
数论中几种复变量解析函数的研究
- 批准号:
18K03218 - 财政年份:2018
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the continuations and the spans of an open Riemann surface in view of the thory of functions of several complex variables
从多复变量函数理论研究开黎曼曲面的延拓和跨度
- 批准号:
15K04930 - 财政年份:2015
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Entire and Meromorphic Functions in Several Complex Variables
多个复变量中的全函数和亚纯函数
- 批准号:
0100486 - 财政年份:2001
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Entire and Meromorphic Functions in Several Complex Variables
多个复变量中的全函数和亚纯函数
- 批准号:
9896094 - 财政年份:1997
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Entire and Meromorphic Functions in Several Complex Variables
多个复变量中的全函数和亚纯函数
- 批准号:
9706376 - 财政年份:1997
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Polynomial interpolation and approximation for functions of several complex variables
多个复变量函数的多项式插值和近似
- 批准号:
7535-1994 - 财政年份:1996
- 资助金额:
$ 10.3万 - 项目类别:
Discovery Grants Program - Individual
Polynomial interpolation and approximation for functions of several complex variables
多个复变量函数的多项式插值和近似
- 批准号:
7535-1994 - 财政年份:1995
- 资助金额:
$ 10.3万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Sciences: Boundary Behavior of Holomorphic Functions of Several Complex Variables
数学科学:多复变量的全纯函数的边界行为
- 批准号:
9322326 - 财政年份:1994
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant