Covers of the Sphere and Moduli of Curves
球面覆盖和曲线模
基本信息
- 批准号:0200225
- 负责人:
- 金额:$ 11.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for proposal # 0200225, Helmut Voelklein:Hurwitz spaces parametrize covers of the sphereof given ramification type and monodromy group.Each Hurwitz space has a natural map to the moduli space of genus g curves (for suitable g). Thishas been used in algebraic geometry for a long time,but only in the case of simple covers (which in particular have a symmetric group as monodromy group).Hurwitz spaces of covers with arbitrary monodromy group were constructed by Fried and Voelklein, and applied to the Inverse Galois problem. Proposed research explores how the group-theoreticmethods associated with Hurwitz spaces can be applied in the study of the moduli of curves.This includes algorithmic methods of computational group theory, which are especially useful in the study of the braid group action on generatingsystems of a finite group. Generalizations replace the braid group by the mapping class group of a punctured surface of non-zero genus. Applicationsto the Inverse Galois Problem are to be expected.The project is partially in cooperation with G. Frey, K. Magaard and S. Shpectorov.Group Theory is the abstract study of symmetry patterns (of any object). Many algorithms of Group Theoryare implemented in modern computer algebra systems.Proposed research uses these computer algebra systems to find and study families of highly symmetric algebraic curves. Algebraic curves are basic objectsin mathematics, physics and applications, e.g., cryptography.Elliptic curve cryptography provides encryption schemesused for data security on the internet.
Helmut Voelklein提案# 0200225的摘要:Hurwitz空间参数化给定分支类型和单值群的spetheris的覆盖。每个Hurwitz空间都有一个到亏格g曲线的模空间的自然映射(对于合适的g)。这在代数几何中已经应用了很长时间,但仅限于简单覆盖(特别是具有对称群作为单值群)的情况。Fried和Voelklein构造了具有任意单值群的覆盖的Hurwitz空间,并将其应用于逆Galois问题。拟议的研究探讨了如何与Hurwitz空间相关的群论方法可以应用于曲线的模的研究。这包括计算群论的算法方法,这在有限群的生成系统上的辫子群作用的研究中特别有用。推广用非零亏格的穿孔曲面的映射类群代替辫子群。本项目部分是与G. Frey,K. Magaard和S.群论是对(任何物体的)对称模式的抽象研究。群论中的许多算法都在现代计算机代数系统中实现,本研究利用这些计算机代数系统来寻找和研究高对称代数曲线族。代数曲线是数学、物理和应用的基本对象,例如,椭圆曲线密码提供了用于互联网上数据安全的加密方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helmut Voelklein其他文献
Helmut Voelklein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helmut Voelklein', 18)}}的其他基金
Year of Algebra at the University of Florida
佛罗里达大学代数年
- 批准号:
0206201 - 财政年份:2002
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Mathematical Sciences: Groups as Galois Groups
数学科学:群作为伽罗瓦群
- 批准号:
9623199 - 财政年份:1996
- 资助金额:
$ 11.1万 - 项目类别:
Continuing grant
Mathematical Sciences: Group-Theoretic Methods in Inverse Galois Theory
数学科学:逆伽罗瓦理论中的群论方法
- 批准号:
9306479 - 财政年份:1993
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
相似海外基金
University of Glasgow and Sphere Fluidics Limited KTP22_23 R5
格拉斯哥大学和 Sphere Fluidics Limited KTP22_23 R5
- 批准号:
10062073 - 财政年份:2024
- 资助金额:
$ 11.1万 - 项目类别:
Knowledge Transfer Partnership
Complex multiangular line systems and sphere packings
复杂的多角线系统和球体填料
- 批准号:
24K06829 - 财政年份:2024
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Understanding and Directing Selectivity in Functionalizations of Strong Covalent Bonds Utilizing Coordination-Sphere Effects
职业:利用配位球效应理解和指导强共价键官能化的选择性
- 批准号:
2338438 - 财政年份:2024
- 资助金额:
$ 11.1万 - 项目类别:
Continuing Grant
Potential of Peri-urban Agriculture and Land Use Planning towards Circulating and Ecological Sphere
城郊农业和土地利用规划对循环和生态圈的潜力
- 批准号:
22KJ2704 - 财政年份:2023
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Swallowing Trajectories and DysPHagia Predictors in AlzheimER’s DisEase (SPHERE)
阿尔茨海默病 (SPHERE) 的吞咽轨迹和吞咽困难预测因子
- 批准号:
10662922 - 财政年份:2023
- 资助金额:
$ 11.1万 - 项目类别:
Research Infrastructure: Mid-scale RI-1 (M1:IP): SPHERE - Security and Privacy Heterogeneous Environment for Reproducible Experimentation
研究基础设施:中型 RI-1 (M1:IP):SPHERE - 用于可重复实验的安全和隐私异构环境
- 批准号:
2330066 - 财政年份:2023
- 资助金额:
$ 11.1万 - 项目类别:
Cooperative Agreement
Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
- 批准号:
22KF0255 - 财政年份:2023
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
A Research on the Development of Actors' Democratic Ideas in the German-speaking Sphere in the Nineteenth Century
19世纪德语区行动者民主思想发展研究
- 批准号:
23K00430 - 财政年份:2023
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Primary and Secondary Coordination Sphere Effects in Ruthenium-Catalyzed Base-Free Hydrogen Transfer Reactions
RUI:钌催化无碱氢转移反应中的初级和次级配位球效应
- 批准号:
2246470 - 财政年份:2023
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Synthetic Mediations: Mapping the Anti-Hermeneutic and Post-Ideological Structure of Automated Communications in the Digital Public Sphere
综合中介:映射数字公共领域自动通信的反解释学和后意识形态结构
- 批准号:
2879442 - 财政年份:2023
- 资助金额:
$ 11.1万 - 项目类别:
Studentship