Automorphic L-Functions and Langlands Functoriality
自同构 L 函数和朗兰兹函数性
基本信息
- 批准号:0200325
- 负责人:
- 金额:$ 46.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent striking results establishing the existence of the functorial symmetric powers of degree 3 and 4 for cusp forms on GL(2) as automorphic forms on GL(4) and GL(5), as well as transfer of generic cusp forms from odd special orthogonal groups to general linear groups, by the investigator and his collaborator, has opened a new front in automorphic forms and number theory. They have resulted in surprising new estimates towards Ramanujan--Selberg and Sato--Tate conjectures, together with a large number of impressive, definitive and new results in number theory, automorphic forms and geometry obtained by other mathematicians. The investigator explores extensions of these to higher powers of forms on GL(2) as well as transfers of generic forms on other classical groups and their simply connected similitude coverings. The well-known and still open case of transfer from GSp(4) to GL(4) then becomes a special case of this. Beside exploring new ideas of Langlands on transferring beyond endoscopy, a situation which is already present in the third and fourth symmetric powers, he plans to investigate any possible extension of his method to infinite dimensional groups. He has a solid approach to establishing the stability of root numbers necessary for these transfers, by means of his method, and studies Bessel functions and the full generality of all the root numbers defined from his method. Stability of a subclass of these root numbers is the last serious problem in establishing these transfers. The investigator is also working on a number of problems concerning poles of local intertwining operators as well as those of automorphic L-functions coming from his method. Much of this work is carried out in collaboration with collaborators.The theory of automorphic forms is a very powerful, exciting and promising part of modern mathematics. Through a number of deep conjectures, mainly due to Robert Langlands of the Institute for Advanced Study (Langlands program), it tries to unify objects from different parts of mathematics such as number theory, analysis and geometry. Wiles' proof of Fermat's Last Theorem, which is a consequence of relating plane curves defined by equations of degree three with rational coefficients to functions on complex upper half plane, provides an excellent example of this vast program. The investigator's recent work with his collaborators has led to new, striking and surprising correspondences of this sort with many consequences in number theory and geometry. While this has resolved some very long standing and significant problems, many more important questions need to be answered. In this project, the investigator uses methods of analysis, i.e., the study of continuous objects, that he has developed over his career and have been fundamental in the recent progress, to establish new correspondences of this kind between objects of a discrete nature with many applications to different parts of number theory and geometry. The project involves many collaborations and training for graduate students and postdocs.
最近惊人的结果建立存在的函子对称权力的程度3和4的尖形式在GL(2)作为自守形式在GL(4)和GL(5),以及转移一般尖形式从奇数特殊正交群一般线性群,由调查员和他的合作者,开辟了一个新的前沿自守形式和数论。 他们已经导致了令人惊讶的新的估计对拉马努金-塞尔伯格和佐藤-泰特disturtures,连同大量令人印象深刻的,明确的和新的成果数论,自守形式和几何获得的其他数学家。 研究者探索了GL(2)上形式的更高幂的扩展,以及其他经典群及其单连通相似覆盖上的一般形式的转移。 从GSp(4)到GL(4)的转移的著名的和仍然开放的情况于是成为这个的一个特殊情况。 除了探索新的想法朗兰兹转移超出内窥镜,这种情况已经存在于第三和第四对称的权力,他计划调查任何可能的延伸,他的方法,以无限维群体。 他有一个坚实的办法,以建立稳定的根号码所需的这些转让,通过他的方法,并研究贝塞尔函数和充分的一般性的所有根号码定义从他的方法。 这些根数的子类的稳定性是建立这些转移的最后一个严重问题。 调查员还致力于一些问题的极点的地方交织运营商以及那些自守的L-功能来自他的方法。 自守形式理论是现代数学中一个非常强大、令人兴奋和有前途的部分。 通过一些深入的分析,主要是由于高等研究院的罗伯特·朗兰兹(朗兰兹计划),它试图统一数学不同部分的对象,如数论,分析和几何。 怀尔斯的费马大定理的证明,这是一个结果的平面曲线定义的方程三度有理系数的功能复杂的上半平面,提供了一个很好的例子,这一巨大的计划。 调查员最近的工作与他的合作者导致了新的,惊人的和令人惊讶的对应关系,这种与许多后果数论和几何。 虽然这解决了一些长期存在的重大问题,但还有许多更重要的问题需要回答。 在这个项目中,研究人员使用分析方法,即,连续对象的研究,他已经在他的职业生涯中发展,并已在最近的进展基本,建立新的对应这种对象之间的离散性质与许多应用程序的不同部分的数论和几何。 该项目涉及许多合作和培训研究生和博士后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Freydoon Shahidi其他文献
Freydoon Shahidi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Freydoon Shahidi', 18)}}的其他基金
L-functions, Fourier Transforms, and Gamma Factors
L 函数、傅立叶变换和伽玛因子
- 批准号:
1801273 - 财政年份:2018
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Langlands Reciprocity and Automorphic Forms
朗兰兹互易和自守形式
- 批准号:
1500759 - 财政年份:2015
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Langlands Correspondence, L-functions and Automorphic Forms
朗兰兹对应、L 函数和自守形式
- 批准号:
1162299 - 财政年份:2012
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Problems in The Theory of Automorphic Forms and L-functions
自守形式和L-函数理论中的问题
- 批准号:
0700280 - 财政年份:2007
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Conference on Automorphic Forms and the Trace Formula; October 13-16, 2004; Toronto, Canada
自守形式和迹公式会议;
- 批准号:
0405874 - 财政年份:2004
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Special Semester Program on Automorphic Forms, Shimura Varieties and L-functions; January 1-May 31, 2003, Fields Institute, Toronto, Canada
自守形式、志村簇和 L 函数特别学期课程;
- 批准号:
0211133 - 财政年份:2002
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Shimura Varieties, the Trace Formula, Congruences and Galois Representations
志村簇、迹公式、同余式和伽罗瓦表示法
- 批准号:
0071404 - 财政年份:2000
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Automorphic L-Functions, Endoscopy, and Representation Theory
自同构 L 函数、内窥镜检查和表示理论
- 批准号:
9970156 - 财政年份:1999
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Automorphic L-functions and Interwining Operators
数学科学:自守 L 函数和交织算子
- 批准号:
9622585 - 财政年份:1996
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Automorphic L-Functions and the Theory of Endoscopy
数学科学:自同构 L 函数和内窥镜理论
- 批准号:
9301040 - 财政年份:1993
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
相似海外基金
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
$ 46.6万 - 项目类别:
Studentship
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
- 批准号:
2894877 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Studentship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
- 批准号:
MR/X023303/1 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Fellowship
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Research Grant
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
- 批准号:
BB/Y512527/1 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Training Grant
Norway. Neuropeptide origins; study of neuropeptide functions in choanoflagellates
挪威。
- 批准号:
BB/X018512/1 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Research Grant
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
- 批准号:
2305691 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Fellowship Award
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
- 批准号:
2340722 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
- 批准号:
2416250 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
- 批准号:
2401152 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant