Problems in The Theory of Automorphic Forms and L-functions
自守形式和L-函数理论中的问题
基本信息
- 批准号:0700280
- 负责人:
- 金额:$ 41.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Taking the lead from the recent progress in Langlands program, the investigator proposes a number of projects, both towards making new progress on functoriality as well as benefiting from what is available. The first includes a study of Langlands "Beyond Endoscopy" by means of both regular and relative trace formulas as well as the possibility of using other Poincar\'e series besides Eisenstein series on infinite dimensional groups with the hope of capturing the new adjoint actions that happen in the dual setting, since it now appears that Eisenstein series on these groups do not lead to any new L-functions. The second set of projects includes establishing the strong transfer from general spin groups as well as the transfer from quasisplit special orthogonal groups to GL(n); special value results for L-functions by means of Harder-Mahnkopf periods through functoriality as well as an attempt in using the Langlands-Shahidi method to obtain such results via certain ideas of Harder; a general theory of Bessel functions dictated by the investigator's work on local coefficients with an eye on proving stability for root numbers of symmetric and exterior square L-functions of GL(n), among others, as well as equality of root numbers obtained from different methods. Finally the investigator will study the singular residues of certain local intertwining operators hoping to interpret them as certain weighted orbital integrals, as well as other problems in representation theory of local groups and Lfunctions. Most of these projects are joint with other mathematicians.Langlands Program is a vast collection of problems and conjectures which connects objects of arithmetic or geometric nature to those of analytic character. Such reciprocities are usually called "Functoriality". One example of this appeared in a fundamental way in the celebrated proof of Fermat's Last Theorem by Wiles. Throughout his career the investigator has developed a theory usually called the Langlands-Shahidi method, which through collaboration with a number of mathematicians, has recently led to a number of new and surprising cases of functoriality with consequences such as new bounds on eigenvalues of Laplacian on certain hyperbolic Riemann surfaces. The present proposal suggests a number of problems to try to extend functoriality to a larger class of cases as well as using them to establish new results in number theory and group representations. Among them is understanding the transcendental nature of values of L-functions, generalizations of Riemann zeta functions, at certain integers and half-integers, in line with integral values of the latter, as well as analyzing other analytic objects of arithmetic significance. The proposal involves training of graduate students and postdocs and collaboration with younger investigators.
通过朗兰兹计划最近的进展,研究人员提出了一些项目,既要在功能上取得新的进展,又要受益于现有的东西。第一部分包括用正则迹公式和相对迹公式研究朗兰兹的“超越内窥镜”,以及在无限维群上使用除艾森斯坦级数以外的其他Poincar‘e级数的可能性,以期捕捉在对偶背景下发生的新的伴随作用,因为现在看来,这些群上的艾森斯坦级数不会产生任何新的L函数。第二组工作包括建立从一般自旋群到GL(N)的强转移以及从拟分裂特殊正交群到GL(N)的转移;利用Hard-Mahnkopf周期通过函数论得到L-函数的特殊值结果,并尝试使用朗兰兹-沙希迪方法通过Hard的某些思想得到这样的结果;由研究者关于局部系数的工作所支配的贝塞尔函数的一般理论,着眼于证明GL(N)的对称和外方L函数的根数的稳定性,以及从不同方法得到的根数的相等性。最后,作者将研究某些局部交织算子的奇异剩余,希望将它们解释为某些加权轨道积分,以及局部群和L函数表示理论中的其他问题。这些项目中的大多数都是与其他数学家联合进行的。朗兰兹计划是一个庞大的问题和猜想的集合,它将算术或几何性质的对象与具有解析性质的对象联系起来。这种重复性通常被称为“功能”。这方面的一个例子出现在威尔斯著名的费马大定理的证明中。在他的整个职业生涯中,这位研究人员发展了一种通常被称为朗兰兹-沙希迪方法的理论,通过与许多数学家的合作,最近导致了一些新的和令人惊讶的函数性情况,结果如某些双曲黎曼曲面上拉普拉斯的特征值的新的界。本提案提出了一些问题,以试图将函数性扩展到更大类别的情况,并利用它们来建立数论和群表示的新结果。其中包括了解L函数的值的超越性,Riemann Zeta函数在某些整数和半整数处的推广,以及与后者的整数值一致的分析对象,以及分析其他具有算术意义的分析对象。该提案涉及对研究生和博士后的培训,以及与年轻研究人员的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Freydoon Shahidi其他文献
Freydoon Shahidi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Freydoon Shahidi', 18)}}的其他基金
L-functions, Fourier Transforms, and Gamma Factors
L 函数、傅立叶变换和伽玛因子
- 批准号:
1801273 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
Langlands Reciprocity and Automorphic Forms
朗兰兹互易和自守形式
- 批准号:
1500759 - 财政年份:2015
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
Langlands Correspondence, L-functions and Automorphic Forms
朗兰兹对应、L 函数和自守形式
- 批准号:
1162299 - 财政年份:2012
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
Conference on Automorphic Forms and the Trace Formula; October 13-16, 2004; Toronto, Canada
自守形式和迹公式会议;
- 批准号:
0405874 - 财政年份:2004
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Automorphic L-Functions and Langlands Functoriality
自同构 L 函数和朗兰兹函数性
- 批准号:
0200325 - 财政年份:2002
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
Special Semester Program on Automorphic Forms, Shimura Varieties and L-functions; January 1-May 31, 2003, Fields Institute, Toronto, Canada
自守形式、志村簇和 L 函数特别学期课程;
- 批准号:
0211133 - 财政年份:2002
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Shimura Varieties, the Trace Formula, Congruences and Galois Representations
志村簇、迹公式、同余式和伽罗瓦表示法
- 批准号:
0071404 - 财政年份:2000
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Automorphic L-Functions, Endoscopy, and Representation Theory
自同构 L 函数、内窥镜检查和表示理论
- 批准号:
9970156 - 财政年份:1999
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Mathematical Sciences: Automorphic L-functions and Interwining Operators
数学科学:自守 L 函数和交织算子
- 批准号:
9622585 - 财政年份:1996
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
Mathematical Sciences: Automorphic L-Functions and the Theory of Endoscopy
数学科学:自同构 L 函数和内窥镜理论
- 批准号:
9301040 - 财政年份:1993
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Model theory, Diophantine geometry, and automorphic functions
模型论、丢番图几何和自守函数
- 批准号:
EP/X009823/1 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Fellowship
Connections Between L-functions and String Theory via Differential Equations in Automorphic Forms
通过自守形式微分方程连接 L 函数和弦理论
- 批准号:
2302309 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
The study of Whittaker functions for degenerate characters and their application to the global theory of automorphic forms
简并特征Whittaker函数的研究及其在自守形式全局理论中的应用
- 批准号:
23K03079 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
- 批准号:
2344044 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
- 批准号:
2201314 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
Strategic construction and refinement of p-adic L-functions based on automorphic representation theory
基于自守表示理论的p进L函数的策略构建与细化
- 批准号:
22K03237 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Discovery Grants Program - Individual
Automorphic Forms and Number Theory
自守形式和数论
- 批准号:
RGPIN-2018-04861 - 财政年份:2021
- 资助金额:
$ 41.25万 - 项目类别:
Discovery Grants Program - Individual
Topics in Automorphic forms and Spectral Theory
自守形式和谱论主题
- 批准号:
2417008 - 财政年份:2020
- 资助金额:
$ 41.25万 - 项目类别:
Studentship
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
- 批准号:
2001183 - 财政年份:2020
- 资助金额:
$ 41.25万 - 项目类别:
Standard Grant














{{item.name}}会员




