Quantization on Cotangent Bundles

余切丛的量化

基本信息

  • 批准号:
    0200649
  • 负责人:
  • 金额:
    $ 10.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2006-05-31
  • 项目状态:
    已结题

项目摘要

PI: Brian C. Hall, University of Notre DameDMS-0200649Abstract:The PI's research concerns the quantization of certainspecial classical systems, those whose classical configurationspace is a compact symmetric space, such as a sphere. Thesimplest physical example of such a system is (the rotationaldegrees of freedom of) a rigid body, whose configuration space isthe rotation group SO(3). The phase space of any such system,namely, the cotangent bundle of the compact symmetric space, hasa natural complex structure that makes the phase space into aKahler manifold. Thus the quantization of such a system can bedone in two ways, one using the usual position Hilbert space andthe other using a Hilbert space of holomorphic functions. Thelatter space generalizes the classical Segal-Bargmann space. Thetwo possible quantum Hilbert spaces are related by a unitarytransform, the generalized Segal-Bargmann transform, developed bythe PI and M. Stenzel. The unitarity of this transform can bere-formulated as a resolution of the identity for the associated"coherent states," as shown in detail by the PI and J. Mitchell.These results have been applied to the quantization oftwo-dimensional Yang-Mills theory and to the classical limit ofThiemann's quantum gravity theory. The PI is continuing toinvestigate several aspects of the theory, including thesemiclassical localization properties of the coherent states,properties of the associated quantization schemes (generalizedWick, anti-Wick, and Weyl quantizations), and the relationship ofthe theory to geometric quantization. Broadly speaking the PI's research is in the boundaryregion between classical and quantum mechanics. Quantum mechanicsis the theory that governs the world at the atomic scale.Although classical (Newtonian) mechanics works well formacroscopic phenomena, it cannot account for the structure ofatoms and molecules--at this level the quantum theory takes over.For the two theories to be consistent with one another thepredictions of quantum mechanics must pass smoothly into those ofclassical mechanics as the scale passes from microscopic tomacroscopic. On the other hand, the mathematical structure of thetwo theories is very different, so it is challenging tounderstand how this quantum-to-classical transition takes place.The PI's research concerns a reformulation of quantum mechanicswhich is equivalent to the usual one but which brings thedescription of quantum mechanics closer to that of classicalmechanics. Specifically, the PI's work takes one standardreformulation of quantum mechanics, the Segal-Bargmann transform,and extends it to apply to systems with more complicated degreesof freedom, such as rotations. This work has been applied in asimplified model of the strong interaction in particle physicsand in an ambitious program of T. Thiemann and collaborators todevelop a quantum theory of gravity.
PI:Brian C. Hall,University of Notre DameDMS-0200649摘要:PI的研究涉及某些特殊的经典系统的量子化,这些系统的经典配置空间是一个紧凑的对称空间,如球体。这种系统最简单的物理例子是刚体(的旋转自由度),其位形空间是旋转群SO(3)。任何这样的系统的相空间,即紧对称空间的余切丛,都是使相空间成为Kahler流形的自然复结构。因此,这样一个系统的量子化可以用两种方法来完成,一种使用通常的位置希尔伯特空间,另一种使用全纯函数的希尔伯特空间。后者是经典Segal-Bargmann空间的推广。这两个可能的量子希尔伯特空间通过一个酉变换联系起来,即由PI和M发展的广义Segal-Bargmann变换。斯坦泽尔这种变换的么正性可以重新表述为对相关“相干态”恒等式的分解,正如PI和J. Mitchell所详细说明的,这些结果已被应用于二维Yang-Mills理论的量子化和Thiemann量子引力理论的经典极限。PI继续研究该理论的几个方面,包括相干态的半经典局域化性质,相关量子化方案(广义Wick,反Wick和Weyl量子化)的性质,以及该理论与几何量子化的关系。广义地说,PI的研究是在经典力学和量子力学之间的边界区域。量子力学是在原子尺度上统治世界的理论。尽管经典力学(牛顿力学)在宏观现象上工作得很好,但它不能解释原子和分子的结构--在这个层次上,量子理论占据了主导地位。为了使这两种理论相互一致,量子力学的预测必须随着尺度从微观到宏观的转变而平稳地过渡到经典力学的预测。另一方面,这两种理论的数学结构是非常不同的,所以理解这种量子到经典的转变是如何发生的是具有挑战性的。PI的研究涉及到量子力学的重新表述,它与通常的量子力学等价,但它使量子力学的描述更接近经典力学。具体来说,PI的工作采用了量子力学的一个标准重新表述,Segal-Bargmann变换,并将其扩展到具有更复杂自由度的系统,例如旋转。这一工作已应用于粒子物理中强相互作用的简化模型和T.蒂曼和他的合作者发展了引力的量子理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Hall其他文献

Co-designed Land-use Scenarios and their Implications for Storm Runoff and Streamflow in New England
  • DOI:
    10.1007/s00267-020-01342-0
  • 发表时间:
    2020-08-02
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Andrew J. Guswa;Brian Hall;Chingwen Cheng;Jonathan R. Thompson
  • 通讯作者:
    Jonathan R. Thompson
Ohio Coronavirus Wastewater Monitoring Network: Implementation of Statewide Monitoring for Protecting Public Health
俄亥俄州冠状病毒废水监测网络:实施全州监测以保护公众健康
  • DOI:
    10.1097/phh.0000000000001783
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    PhD Mph Zuzana Bohrerova;PhD Nichole E. Brinkman;PhD Ritu Chakravarti;PhD Saurabh Chattopadhyay;PhD Seth A. Faith;PhD Jay Garland;MSc James Herrin;PhD Natalie Hull;PhD Michael Jahne;PhD Dae;PhD Scott P. Keely;PhD Jiyoung Lee;PhD Stan Lemeshow;PhD John Lenhart;MS Eva Lytmer;PhD Mph Devesh Malgave;Mph Lin Miao;MS Angela Minard;PhD Xiaozhen Mou;PhD Maitreyi Nagarkar;PhD Anda Quintero;MS Francesca D. R. Savona;PhD John Senko;PhD Joan L. Slonczewski;PhD Rachel R. Spurbeck;PhD Michael G. Sovic;PhD R. Travis Taylor;PhD Linda K. Weavers;PE Mark Weir;R. Fugitt;Gene Phillips;Jill Garratt;Sarah Lauterbach;Rachel Baker;Brian Hall;Tiffani Kavalec;Ohio Epa;Amy Kirby
  • 通讯作者:
    Amy Kirby
GA-Based Optimization of Steel Moment Frames: A Case Study
基于遗传算法的钢弯矩框架优化:案例研究
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Hall
  • 通讯作者:
    Brian Hall
CONSERVATION OF CHANGING LANDSCAPES: VEGETATION AND LAND‐USE HISTORY OF CAPE COD NATIONAL SEASHORE
不断变化的景观保护:科德角国家海岸的植被和土地利用历史
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robert W. Eberhardt;D. Foster;Glenn Motzkin;Brian Hall
  • 通讯作者:
    Brian Hall
Cutting to cope - a modern adolescent phenomenon.
通过削减来应对——一种现代青少年现象。
  • DOI:
    10.1111/j.1365-2214.2010.01095.x
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Hall;Maurice Place
  • 通讯作者:
    Maurice Place

Brian Hall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Hall', 18)}}的其他基金

Collaborative Research: EPIIC: Developing Emerging Technology Ecosystem Partnerships for Primarily Undergraduate Institutions
合作研究:EPIIC:为主要本科机构发展新兴技术生态系统合作伙伴关系
  • 批准号:
    2331431
  • 财政年份:
    2023
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
Holomorphic function spaces and quantization
全纯函数空间和量化
  • 批准号:
    1301534
  • 财政年份:
    2013
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Continuing Grant
Quantization, complex structures, and spaces of holomorphic functions
量子化、复数结构和全纯函数空间
  • 批准号:
    1001328
  • 财政年份:
    2010
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Continuing Grant
Quantization, Symmetric Spaces, and Symplectic Reduction
量化、对称空间和辛约简
  • 批准号:
    0555862
  • 财政年份:
    2006
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9705930
  • 财政年份:
    1997
  • 资助金额:
    $ 10.34万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了