Quantization, complex structures, and spaces of holomorphic functions
量子化、复数结构和全纯函数空间
基本信息
- 批准号:1001328
- 负责人:
- 金额:$ 13.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project continues the PI's work related to complex structures and theholomorphic approach to quantization, with the emphasis shifting toward spacesof holomorphic functions on infinite-dimensional groups. The PI, in work with W. Kirwin, has developed a new method of understanding certain so-called adapted complex structures on a Riemannian manifold, using the imaginary-time geodesic flow and expects to construct a new class of complex structures by introducing a magnetic term into the geodesic flow. Another part of this project includes a return to an earlier part of the PI's research, namely the study of holomorphic function spaces over infinite-dimensional groups. The current goal is to develop a better understanding of various basic constructs in the subject where even finding the proper definitions is extremely difficult. The techniques the PI is developing are expected to contribute to quantum physics, especially to the fundamental subject of quantum field theory. Field theories are systems with infinitely many degrees of freedom, and quantization of such theories is notoriously difficult. The holomorphic approach to quantization has proved fruitful already in the finite-dimensional setting, and it has certain advantages with respect to the infinite-dimensional limit. In particular, infinite-dimensional groups show up often in quantum field theory, so the PIs work on such groups is not far from applications.The PI's work in quantum theory has led him to start writing a book on quantum mechanics. The goal of this book is to make quantum mechanics accessibleto an audience of mathematicians. This book will fill in the necessary background from classical mechanics and then explain quantum mechanics using notation that is familiar to mathematicians, and showing respect for the significant technical mathematical issues that are glossed over in the physics literature. The goal, however, is not to emphasize the mathematical technicalities, but rather to explain the main ideas of quantum theory in language that mathematicians feel comfortable with. The PI hopes that this book will contribute to the long and mutually beneficial interaction between quantum physics and mathematics. The PI will continue to write additional expository articles as well as research articles and will teach a graduate course using the materials being developed for the book.
这个项目延续了PI在复杂结构和量子化的全纯方法方面的工作,重点转向无限维群上的全纯函数空间。PI与W. Kirwin,已经开发出一种新的方法来理解某些所谓的适应复杂结构的黎曼流形上,使用时间测地线流,并期望通过引入一个磁项到测地线流构造一类新的复杂结构。该项目的另一部分包括返回到PI研究的早期部分,即研究无限维群上的全纯函数空间。 目前的目标是更好地理解该主题中的各种基本结构,即使找到适当的定义也非常困难。PI正在开发的技术预计将有助于量子物理学,特别是量子场论的基本主题。场论是具有无限多个自由度的系统,量子化这种理论是出了名的困难。 量子化的全纯方法在有限维的情况下已经证明是卓有成效的,而且在无限维的情况下也有一定的优势。特别是量子场论中经常出现无限维群,PI对这类群的研究离应用不远了,PI在量子理论方面的工作使他开始写一本关于量子力学的书。这本书的目标是使量子力学为数学家所理解.本书将填补经典力学的必要背景,然后使用数学家熟悉的符号解释量子力学,并尊重物理文献中掩盖的重要技术数学问题。然而,我们的目标不是强调数学的技术性,而是用数学家感到舒服的语言来解释量子理论的主要思想。PI希望这本书将有助于量子物理学和数学之间的长期互利互动。PI将继续撰写更多的临时文章以及研究文章,并将使用为该书开发的材料教授研究生课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Hall其他文献
Co-designed Land-use Scenarios and their Implications for Storm Runoff and Streamflow in New England
- DOI:
10.1007/s00267-020-01342-0 - 发表时间:
2020-08-02 - 期刊:
- 影响因子:3.000
- 作者:
Andrew J. Guswa;Brian Hall;Chingwen Cheng;Jonathan R. Thompson - 通讯作者:
Jonathan R. Thompson
Ohio Coronavirus Wastewater Monitoring Network: Implementation of Statewide Monitoring for Protecting Public Health
俄亥俄州冠状病毒废水监测网络:实施全州监测以保护公众健康
- DOI:
10.1097/phh.0000000000001783 - 发表时间:
2023 - 期刊:
- 影响因子:3.3
- 作者:
PhD Mph Zuzana Bohrerova;PhD Nichole E. Brinkman;PhD Ritu Chakravarti;PhD Saurabh Chattopadhyay;PhD Seth A. Faith;PhD Jay Garland;MSc James Herrin;PhD Natalie Hull;PhD Michael Jahne;PhD Dae;PhD Scott P. Keely;PhD Jiyoung Lee;PhD Stan Lemeshow;PhD John Lenhart;MS Eva Lytmer;PhD Mph Devesh Malgave;Mph Lin Miao;MS Angela Minard;PhD Xiaozhen Mou;PhD Maitreyi Nagarkar;PhD Anda Quintero;MS Francesca D. R. Savona;PhD John Senko;PhD Joan L. Slonczewski;PhD Rachel R. Spurbeck;PhD Michael G. Sovic;PhD R. Travis Taylor;PhD Linda K. Weavers;PE Mark Weir;R. Fugitt;Gene Phillips;Jill Garratt;Sarah Lauterbach;Rachel Baker;Brian Hall;Tiffani Kavalec;Ohio Epa;Amy Kirby - 通讯作者:
Amy Kirby
GA-Based Optimization of Steel Moment Frames: A Case Study
基于遗传算法的钢弯矩框架优化:案例研究
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Brian Hall - 通讯作者:
Brian Hall
CONSERVATION OF CHANGING LANDSCAPES: VEGETATION AND LAND‐USE HISTORY OF CAPE COD NATIONAL SEASHORE
不断变化的景观保护:科德角国家海岸的植被和土地利用历史
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Robert W. Eberhardt;D. Foster;Glenn Motzkin;Brian Hall - 通讯作者:
Brian Hall
Cutting to cope - a modern adolescent phenomenon.
通过削减来应对——一种现代青少年现象。
- DOI:
10.1111/j.1365-2214.2010.01095.x - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Brian Hall;Maurice Place - 通讯作者:
Maurice Place
Brian Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Hall', 18)}}的其他基金
Collaborative Research: EPIIC: Developing Emerging Technology Ecosystem Partnerships for Primarily Undergraduate Institutions
合作研究:EPIIC:为主要本科机构发展新兴技术生态系统合作伙伴关系
- 批准号:
2331431 - 财政年份:2023
- 资助金额:
$ 13.74万 - 项目类别:
Standard Grant
Holomorphic function spaces and quantization
全纯函数空间和量化
- 批准号:
1301534 - 财政年份:2013
- 资助金额:
$ 13.74万 - 项目类别:
Continuing Grant
Quantization, Symmetric Spaces, and Symplectic Reduction
量化、对称空间和辛约简
- 批准号:
0555862 - 财政年份:2006
- 资助金额:
$ 13.74万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9705930 - 财政年份:1997
- 资助金额:
$ 13.74万 - 项目类别:
Fellowship Award
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用新型 pH 荧光探针研究 Syntaxin 12/13 介导的多种细胞器互作
- 批准号:92054103
- 批准年份:2020
- 资助金额:87.0 万元
- 项目类别:重大研究计划
S-棕榈酰化新型修饰在细胞自噬中的功能和机制研究
- 批准号:31970693
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
核孔复合体调控细胞核/叶绿体信号交流分子机制的研究
- 批准号:31970656
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
m6A甲基化酶ZCCHC4结合EIF3复合物调节翻译的机制研究
- 批准号:31971330
- 批准年份:2019
- 资助金额:62.0 万元
- 项目类别:面上项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
细胞不对称分裂时PAR-3/PAR-6复合物极性聚集的分子机制研究
- 批准号:31871394
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 13.74万 - 项目类别:
Continuing Grant
Carbonylation Methodologies and Strategies for Building Complex Chemical Structures
构建复杂化学结构的羰基化方法和策略
- 批准号:
2349014 - 财政年份:2024
- 资助金额:
$ 13.74万 - 项目类别:
Standard Grant
Technologies for High-Throughput Mapping of Antigen Specificity to B-Cell-Receptor Sequence
B 细胞受体序列抗原特异性高通量作图技术
- 批准号:
10734412 - 财政年份:2023
- 资助金额:
$ 13.74万 - 项目类别:
Population Structure and Clinical Impact of Multi-strain and Mixed-species Cryptococcal Infections
多菌株和混合物种隐球菌感染的人群结构和临床影响
- 批准号:
10724704 - 财政年份:2023
- 资助金额:
$ 13.74万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 13.74万 - 项目类别:
Maternal organelle contribution to offspring germline health
母体细胞器对后代种系健康的贡献
- 批准号:
10607418 - 财政年份:2023
- 资助金额:
$ 13.74万 - 项目类别:
Integrated frameworks for single-cell epigenomics based transcriptional regulatory networks
基于单细胞表观基因组学的转录调控网络的集成框架
- 批准号:
10713209 - 财政年份:2023
- 资助金额:
$ 13.74万 - 项目类别:
Effect of chronic ethanol exposure on synaptic organization in the rostromedial tegmental nucleus
慢性乙醇暴露对吻内侧被盖核突触组织的影响
- 批准号:
10809364 - 财政年份:2023
- 资助金额:
$ 13.74万 - 项目类别:
Single molecule oligopeptide fingerprinting based on templated self-assembly of oligonucleotide structures
基于寡核苷酸结构模板化自组装的单分子寡肽指纹识别
- 批准号:
10838153 - 财政年份:2023
- 资助金额:
$ 13.74万 - 项目类别: