Dynamic Resonances in Nonlinear Mechanical Systems
非线性机械系统中的动态共振
基本信息
- 批准号:0201347
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-15 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This work focuses on mechanical systems in which one or more of the frequencies of oscillation are dynamical variables, whose evolutions are dependent on the state of the system. As time evolves these systems can slowly move in and out of a state of resonance. This proposal investigates the dynamical behavior of these slowly-varying systems near resonance, accounting for the full complexity of the coupling between components that exists in these systems. Two primary research topics are to be addressed in this work, i) the effects of resonances on the dynamical behavior of directly coupled, multi-degree-of-freedom systems, and ii) resonant effects in nonlinear systems in the presence of period-amplitude dependence of one or more of the components. These include mistuned systems where the components with dynamical frequencies are coupled to all the remaining resonant modes as well as examples in the presence of additional internal resonances. The multi-degree-of-freedom systems will be reduced using singular perturbation methods and the transport of phase space through the resonance region will be analyzed through analytical techniques and numerical investigations. Finally, the analytical predictions will be verified on an existing experimental apparatus that will be used to more fully account for the complexities of physical systems. Resonances in dynamical systems provide a mechanism by which complex coupled systems can undergo unexpected qualitative changes in their dynamical behavior, and this work will lead to a more complete understanding of this behavior. These topics represent a significant class of problems with relevance to complex, interconnected mechanical systems and will identify parameters and the characteristics of coupling which play an important role in determining the impact of resonances in interconnected mechanical systems.
这项工作的重点是机械系统中的一个或多个振荡频率的动态变量,其演变是依赖于系统的状态。随着时间的推移,这些系统可以慢慢地进入和脱离共振状态。该建议研究了这些慢变系统在共振附近的动力学行为,解释了这些系统中存在的组件之间耦合的全部复杂性。两个主要的研究课题是要解决在这项工作中,i)的直接耦合,多自由度系统的动力学行为的共振的影响,和ii)在非线性系统中的共振效应的周期振幅依赖的一个或多个组件的存在。这些包括失谐系统,其中具有动态频率的组件耦合到所有剩余的谐振模式,以及存在额外的内部谐振的示例。多自由度系统将减少使用奇异摄动方法和相空间的运输通过共振区域将通过分析技术和数值研究进行分析。最后,分析预测将在现有的实验装置上得到验证,该实验装置将用于更充分地解释物理系统的复杂性。动力系统中的共振提供了一种机制,通过这种机制,复杂的耦合系统可以在其动力学行为中发生意想不到的质变,这项工作将导致对这种行为的更完整的理解。这些主题代表了与复杂的,相互关联的机械系统相关的一类重要问题,并将识别参数和耦合特性,这些参数和耦合特性在确定相互关联的机械系统中共振的影响方面发挥着重要作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Quinn其他文献
Donald Quinn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Quinn', 18)}}的其他基金
Collaborative Research: Exploring Dynamic Complex Behaviors in Many-Degree-of-Freedom, Coupled Micro- and Nano-systems
合作研究:探索多自由度耦合微纳米系统中的动态复杂行为
- 批准号:
1537701 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Nonlinear Design and Development of Multi Degree-of-freedom Broadband Energy Harvesting Systems
合作研究:多自由度宽带能量收集系统的非线性设计与开发
- 批准号:
1100144 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Phase II Development of an Innovative Multi-functional Smart Vibration Platform
合作研究:创新型多功能智能振动平台的二期开发
- 批准号:
0717818 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Magnetic Resonances in Nonlinear Dielectric Nanostructures: New Light-Matter Interactions and Machine Learning Enhanced Design
非线性介电纳米结构中的磁共振:新的光-物质相互作用和机器学习增强设计
- 批准号:
2240562 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Nonlinear Resonances of Highly Damped, Soft Materials
职业:高阻尼软材料的非线性共振
- 批准号:
2145512 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Bounded Media
有界介质中的非线性波共振
- 批准号:
RGPIN-2019-06169 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
- 批准号:
RGPIN-2014-05401 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
- 批准号:
RGPIN-2014-05401 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Linear and Nonlinear Dispersive Waves: Solitons, Nonlinear Resonances and Spectral Theory
线性和非线性色散波:孤子、非线性共振和谱理论
- 批准号:
1600749 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Nonlinear Wave Resonances in Continuous Media
连续介质中的非线性波谐振
- 批准号:
RGPIN-2014-05401 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual