Asymptotic Solutions to Problems Arising in Computer Science and Information Theory
计算机科学和信息论中出现的问题的渐近解
基本信息
- 批准号:0202815
- 负责人:
- 金额:$ 15.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-15 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Knessl0202815 The investigator, together with colleagues and students,studies a variety of problems in computer science, informationtheory, and applied probability. These have the common featurethat they can be reduced to solving recursion or differentialequations. Sometimes these equations can be solved exactly usingtransform methods. Then one can obtain asymptotic information byexpanding the results using methods such as the Laplace or saddlepoint methods, the Euler-Maclaurin and Poisson summationformulas, Watson transformations, etc. Many applied problems ofinterest (especially nonlinear ones) cannot be solved exactly.For these the investigator and colleagues develop appropriateasymptotic techniques that analyze directly the governingequations. These are variants of applied mathematics methods,such as WKB expansions and matched asymptotic expansions. Thelatter are especially useful for asymptotic problems that involveseveral different scales. The focus is on problems incombinatorics, data compression, analysis of algorithms, digitaland binary trees, queuing, and coding. Computers play a progressively greater role in all of ourlives. Important problems in computer science include sorting andsearching, efficient data storage, and data compression. Todecide on what is a good method to search out a given item insome database, or a good method for storing music or video withminimal use of memory, it is important to analyze the method oralgorithm. For example, one might ask for the average searchtime, or for the likelihood that the search time will be verylong, exceeding some prescribed tolerance. Such questions involvethe "analysis of algorithms." They can frequently be reduced tosolving certain classes of equations. The investigator andcolleagues develop mathematical tools for obtaining solutions ofthese equations, either exact ones or accurate approximations.Approximations are often sufficient, because for example thesearching problem is most important if the total number of itemsstored is very large. This "largeness" shows up as a parameter inthe governing equation that facilitates its solution. Relatedmathematical problems arise in other important areas such asmolecular biology and communications, and the investigators'methods and results should thus find applicability to a widerange of problems.
Knessl0202815 调查员,与同事和学生一起,研究计算机科学,信息论和应用概率中的各种问题。 这些都有一个共同的特点,即它们可以减少到解决递归或微分方程。 有时这些方程可以用变换方法精确求解。 然后,人们可以通过扩展的结果,如拉普拉斯或鞍点方法,欧拉-麦克劳林和泊松求和公式,沃森变换等方法获得渐近信息。许多应用问题的兴趣(特别是非线性的)不能得到精确的解决。 这些是应用数学方法的变体,例如WKB展开和匹配渐近展开。 后者对于涉及不同尺度的渐近问题特别有用。 重点是在组合学,数据压缩,算法分析,数字和二叉树,排队和编码的问题。 计算机在我们的生活中扮演着越来越重要的角色。 计算机科学中的重要问题包括排序和搜索、有效的数据存储和数据压缩。 要决定什么是在数据库中搜索给定项目的好方法,或者是用最少的内存存储音乐或视频的好方法,分析方法或算法很重要。 例如,可以要求平均搜索时间,或者搜索时间将非常长,超过某些规定的容限的可能性。 这类问题涉及"算法分析"。" 它们常常可以归结为解某些类的方程。 研究者和他的同事们开发了数学工具来获得这些方程的解,无论是精确的还是精确的近似值。近似值通常是足够的,因为例如,如果存储的项目总数非常大,搜索问题就非常重要。 这种"大"在控制方程中表现为一个参数,便于求解。 相关的数学问题出现在其他重要领域,如分子生物学和通信,研究人员的方法和结果,因此应该找到适用于广泛的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Knessl其他文献
The conditional sojourn time distribution in the GI/M/1 processor-sharing queue in heavy traffic
- DOI:
10.1007/bf01153528 - 发表时间:
1993-03-01 - 期刊:
- 影响因子:0.700
- 作者:
Xiaoming Tan;Yongzhi Yang;Charles Knessl - 通讯作者:
Charles Knessl
On the infinite server shortest queue problem: Non-symmetric case
- DOI:
10.1007/s11134-006-5500-z - 发表时间:
2006-02-01 - 期刊:
- 影响因子:0.700
- 作者:
Haishen Yao;Charles Knessl - 通讯作者:
Charles Knessl
A fork-join queueing model: Diffusion approximation, integral representations and asymptotics
- DOI:
10.1007/bf01149176 - 发表时间:
1996-01-01 - 期刊:
- 影响因子:0.700
- 作者:
Xiaoming Tan;Charles Knessl - 通讯作者:
Charles Knessl
Asymptotic expansions for the conditional sojourn time distribution in the M/M/1-PS queue
- DOI:
10.1007/s11134-007-9054-5 - 发表时间:
2007-12-15 - 期刊:
- 影响因子:0.700
- 作者:
Qiang Zhen;Charles Knessl - 通讯作者:
Charles Knessl
Some first passage time problems for the shortest queue model
- DOI:
10.1007/s11134-008-9062-0 - 发表时间:
2008-01-29 - 期刊:
- 影响因子:0.700
- 作者:
Haishen Yao;Charles Knessl - 通讯作者:
Charles Knessl
Charles Knessl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Knessl', 18)}}的其他基金
Collaborative Research : Nonlinear equations arising in information theory and computer sciences
合作研究:信息论和计算机科学中出现的非线性方程
- 批准号:
0503745 - 财政年份:2005
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Presidential Young Investigator
数学科学:总统青年研究员
- 批准号:
8857115 - 财政年份:1988
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8605816 - 财政年份:1986
- 资助金额:
$ 15.2万 - 项目类别:
Fellowship Award
相似海外基金
Quantum computing solutions for optimisation problems in Energy Grids
能源网格优化问题的量子计算解决方案
- 批准号:
10108062 - 财政年份:2024
- 资助金额:
$ 15.2万 - 项目类别:
Small Business Research Initiative
Conference: 2024 Gordon Research Conference on Ocean Mixing: Understanding the Role of Ocean Mixing Across Scales on Climate, Ecosystems, and Ocean Solutions to Societal Problems
会议:2024 年戈登海洋混合研究会议:了解不同尺度的海洋混合对气候、生态系统和海洋社会问题解决方案的作用
- 批准号:
2344507 - 财政年份:2024
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Quantum computing solutions for optimisation problems in Energy Grids
能源网格优化问题的量子计算解决方案
- 批准号:
10083523 - 财政年份:2023
- 资助金额:
$ 15.2万 - 项目类别:
Small Business Research Initiative
Investigation and exploration of mathematical solutions for isogeny problems with auxiliary information
具有辅助信息的同源问题数学解的研究与探索
- 批准号:
23K18469 - 财政年份:2023
- 资助金额:
$ 15.2万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Smooth Solutions to Linear Inequalities, Constrained Sobolev interpolation, and Trace Problems on Domains
线性不等式的平滑解、约束 Sobolev 插值和域上的追踪问题
- 批准号:
2247429 - 财政年份:2023
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant
Computation of Diverse Solutions in Discrete Convex Optimization Problems
离散凸优化问题的多样解的计算
- 批准号:
23K10995 - 财政年份:2023
- 资助金额:
$ 15.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Using Monte Carlo Methods to Examine Solutions to Water Wave Problems
使用蒙特卡罗方法检查水波问题的解决方案
- 批准号:
574653-2022 - 财政年份:2022
- 资助金额:
$ 15.2万 - 项目类别:
University Undergraduate Student Research Awards
Using Fundamental Economic Solutions to Solve Real-World Problems
使用基本的经济解决方案来解决现实世界的问题
- 批准号:
RGPIN-2018-06509 - 财政年份:2022
- 资助金额:
$ 15.2万 - 项目类别:
Discovery Grants Program - Individual
Invariants of gas and fluid flows and exact solutions to boundary eigenvalue problems
气体和流体流动的不变量以及边界特征值问题的精确解
- 批准号:
RGPIN-2022-03404 - 财政年份:2022
- 资助金额:
$ 15.2万 - 项目类别:
Discovery Grants Program - Individual
I-Corps: Fast and Accurate Artificial Intelligence/Machine Learning Solutions to Inverse and Imaging Problems
I-Corps:针对逆向和成像问题的快速准确的人工智能/机器学习解决方案
- 批准号:
2224299 - 财政年份:2022
- 资助金额:
$ 15.2万 - 项目类别:
Standard Grant