Smooth Solutions to Linear Inequalities, Constrained Sobolev interpolation, and Trace Problems on Domains

线性不等式的平滑解、约束 Sobolev 插值和域上的追踪问题

基本信息

  • 批准号:
    2247429
  • 负责人:
  • 金额:
    $ 22.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Solving a system of linear inequalities with parameters is essential in various applications, such as engineering, science, sociology, economics, industry, and even medicine (such as the optimal combination of drugs for efficacy and safety). The efficient algorithms on constrained interpolation can be applied to analyze big data such as Twitter data. This endeavor will help promote interdisciplinary research and improve the current computing infrastructure. Research opportunities will be provided for postdocs, graduate students, and undergraduate students.Smooth solutions to systems of linear inequalities will be addressed. Attention will also be paid to efficient algorithms for constrained interpolation by smooth functions and extension questions on arbitrary domains. The methods to be developed will revolve around common mathematical themes, such as Calderon-Zygmund decomposition, well-separated pairs, and convex optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
求解带参数的线性不等式系统在各种应用中都是必不可少的,例如工程学、科学、社会学、经济学、工业甚至医学(例如药物的有效性和安全性的最佳组合)。约束插值的有效算法可以应用于分析大数据,如Twitter数据。这一奋进将有助于促进跨学科研究,并改善当前的计算基础设施。研究机会将提供给博士后,研究生,和本科生。光滑的解决方案,系统的线性不等式将得到解决。也将注意到有效的算法约束插值光滑函数和扩展问题的任意域。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Garving Luli其他文献

Garving Luli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Garving Luli', 18)}}的其他基金

CAREER: Variational Problems on Arbitrary Sets
职业:任意集上的变分问题
  • 批准号:
    1554733
  • 财政年份:
    2016
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Continuing Grant
Whitney's Extension Problems
惠特尼的推广问题
  • 批准号:
    1265668
  • 财政年份:
    2013
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Continuing Grant
Whitney's Extension Problems
惠特尼的推广问题
  • 批准号:
    1355968
  • 财政年份:
    2013
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Continuing Grant

相似海外基金

Global solutions to the Cauchy problem for systems of quasi-linear wave equations satisfying the weak null condition
满足弱零条件的拟线性波动方程组柯西问题的全局解
  • 批准号:
    21K03324
  • 财政年份:
    2021
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis on the linear response for solutions of mean field equations
平均场方程解线性响应的数学分析
  • 批准号:
    20K03675
  • 财政年份:
    2020
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the structure analysis of measure value solutions and singular sets for non-linear drift diffusion systems
非线性漂移扩散系统测值解与奇异集的结构分析
  • 批准号:
    19K03561
  • 财政年份:
    2019
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Challenges to unexplored fields of research on the Cauchy problem for systems of quasi-linear wave equations--large-time behavior and regularity of solutions--
拟线性波动方程组柯西问题的未探索领域研究面临的挑战——解的大时间行为和规律性——
  • 批准号:
    18K03365
  • 财政年份:
    2018
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On study of modular linear differential equations and their solutions by arithmetic approach
模线性微分方程及其解的算术研究
  • 批准号:
    18K03215
  • 财政年份:
    2018
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of the solutions to non-linear hyperbolic partial differential equations derived from astrophysics
天体物理学非线性双曲偏微分方程解的结构
  • 批准号:
    18K03371
  • 财政年份:
    2018
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AF: Small: A-Hypergeometric Solutions of Linear Differential Equations
AF:小:线性微分方程的 A 超几何解
  • 批准号:
    1618657
  • 财政年份:
    2016
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Standard Grant
Classification of the behavior of solutions to degenerate quasi-linear wave equations
简并拟线性波动方程解的行为分类
  • 批准号:
    16K17631
  • 财政年份:
    2016
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Borel summability of divergent power series solutions to linear partial differential equations with time dependent coefficients and its applications
含时间相关系数的线性偏微分方程发散幂级数解的Borel可求和性及其应用
  • 批准号:
    15K04898
  • 财政年份:
    2015
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Three-Dimensional Aircraft Aeroelastic Solutions via a Non-Linear Frequency Domain Method
通过非线性频域方法的三维飞机气动弹性解决方案
  • 批准号:
    464871-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了