Manifolds with Lower Curvature Bounds and Their Limits
具有较低曲率界限的流形及其极限
基本信息
- 批准号:0204187
- 负责人:
- 金额:$ 19.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is concerned with the effect of curvature bounds onthe local geometric properties and global topology of Riemannianmanifolds with various sectional and Ricci curvature bounds andof their Gromov-Hausdorff limits. The principal investigatorswill study the structure of the singularities that spacessatisfying some natural geometric assumptions candevelop. Understanding the structure of such singularities canoften give a lot of information about the topological propertiesof such spaces. They will study the structure of Gromov-Hausdorfflimits of manifolds with Ricci curvature bounded below; topologyof convergence with lower sectional curvature bound; thestructures of the fundamental groups for manifolds with lowercurvature bound; optimal bound of isoperimetric constant;obstructions to nonnegative curvature on simply-connectedmanifolds.Geometric objects such as manifolds appear naturally in scienceand engineering, as configuration spaces, as Einsten's model ofuniverse. Ricci curvature is a fundamental concept in Einstein'sgeneral relativity. Thus the fundamental research in these areashould not only be important in its own right but also shouldhave implications in physics and engineering.
本文讨论了曲率界对具有不同截面和Ricci曲率界的黎曼流形的局部几何性质和整体拓扑的影响,以及它们的Gromov-Hausdorff极限的影响。主要研究人员将研究满足某些自然几何假设的空间可以发展的奇异点的结构。理解这种奇点的结构通常可以提供很多关于这种空间的拓扑性质的信息。主要研究Ricci曲率下有界流形的Gromov-Hausdorf极限的结构、截面曲率下有界流形的收敛拓扑、曲率下有界流形的基本群的结构、等周常数的最优界和等。简单连通流形上非负曲率的障碍。几何对象,如流形,自然出现在科学和工程中,作为配置空间,as Einsten爱因斯坦's模型ofuniverse宇宙. Ricci曲率是爱因斯坦广义相对论中的一个基本概念。因此,这些领域的基础研究不仅本身重要,而且在物理学和工程学上也有意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guofang Wei其他文献
Antifungal itraconazole ameliorates experimental autoimmune encephalomyelitis through a novel mechanism of action.
抗真菌伊曲康唑通过一种新的作用机制改善实验性自身免疫性脑脊髓炎。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.1
- 作者:
Huifen Huang;Xiaolin Tian;Xiao Peng;Liangtong Huang;Lerong Mei;Y. Zhan;Siying Chen;Huihua Wu;Guofang Wei;Xueli Cai - 通讯作者:
Xueli Cai
Research on the detection and identification method of internal cracks in semi-rigid base asphalt pavement based on three-dimensional ground penetrating radar
基于三维探地雷达的半刚性基层沥青路面内部裂缝检测与识别方法研究
- DOI:
10.1016/j.measurement.2024.116486 - 发表时间:
2025-02-28 - 期刊:
- 影响因子:5.600
- 作者:
Haoran Zhu;Guofang Wei;Dongsheng Ma;Xin Yu;Chen Dong - 通讯作者:
Chen Dong
The Fundamental Gap of Horoconvex Domains in ℍn
ℍn 中 Horo凸域的基本间隙
- DOI:
10.1093/imrn/rnab187 - 发表时间:
2021 - 期刊:
- 影响因子:1
- 作者:
X. H. Nguyen;A. Stancu;Guofang Wei - 通讯作者:
Guofang Wei
Universal covers for Hausdorff limits of noncompact spaces
非紧空间豪斯多夫极限的通用覆盖
- DOI:
10.1090/s0002-9947-03-03412-3 - 发表时间:
2002 - 期刊:
- 影响因子:1.3
- 作者:
C. Sormani;Guofang Wei - 通讯作者:
Guofang Wei
Metrics of positive Ricci curvature on vector bundles over nilmanifolds
尼尔流形上向量丛的正里奇曲率度量
- DOI:
10.1007/s00039-002-8236-x - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
I. Belegradek;Guofang Wei - 通讯作者:
Guofang Wei
Guofang Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guofang Wei', 18)}}的其他基金
Eigenvalue Comparison and Integral Curvature
特征值比较和积分曲率
- 批准号:
2104704 - 财政年份:2021
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant
Spaces with Curvature Bounded from Below
曲率从下界起的空间
- 批准号:
1506393 - 财政年份:2015
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant
Aspects of Bakry-Emery Ricci Curvature
Bakry-Emery Ricci 曲率方面
- 批准号:
1105536 - 财政年份:2011
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant
Manifolds with Lower Ricci Curvature Bounds
具有下里奇曲率界的流形
- 批准号:
0806016 - 财政年份:2008
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant
Geometry, Analysis and Topology under Curvature Bounds
曲率界限下的几何、分析和拓扑
- 批准号:
9971833 - 财政年份:1999
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Topology and Geometry Under Curvature Bounds
数学科学:曲率界下的拓扑和几何
- 批准号:
9626419 - 财政年份:1996
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometry and Topology under Ricci Curvature Bounds
数学科学:里奇曲率界下的几何和拓扑
- 批准号:
9409166 - 财政年份:1994
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant
相似海外基金
Geometry analysis on discrete spaces under a lower Ricci curvature bound
里奇曲率下界下离散空间的几何分析
- 批准号:
21K20315 - 财政年份:2021
- 资助金额:
$ 19.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Topological and equivariant rigidity in the presence of lower curvature bounds
存在曲率下限时的拓扑刚度和等变刚度
- 批准号:
339994903 - 财政年份:2017
- 资助金额:
$ 19.6万 - 项目类别:
Priority Programmes
Kahler Manifolds with Curvature Lower Bound
具有曲率下界的卡勒流形
- 批准号:
1709894 - 财政年份:2017
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant
Quasi-local mass and 3D Riemannian manifolds with curvature lower bounds
准局部质量和具有曲率下界的 3D 黎曼流形
- 批准号:
1935375 - 财政年份:2017
- 资助金额:
$ 19.6万 - 项目类别:
Studentship
Lower Curvature Bounds, Symmetries, and Topology
较低的曲率界限、对称性和拓扑
- 批准号:
1611780 - 财政年份:2016
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant
Geometry and Topology in the Presence of Lower Curvature Bounds
存在较低曲率界的几何和拓扑
- 批准号:
1209387 - 财政年份:2012
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant
Geometry and Topology in the Presence of Lower Curvature Bounds
存在较低曲率界的几何和拓扑
- 批准号:
0941615 - 财政年份:2009
- 资助金额:
$ 19.6万 - 项目类别:
Continuing Grant
Manifolds with Lower Ricci Curvature Bounds
具有下里奇曲率界的流形
- 批准号:
0806016 - 财政年份:2008
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant
Geometry and Topology in the Presence of Lower Curvature Bounds
存在较低曲率界的几何和拓扑
- 批准号:
0706791 - 财政年份:2007
- 资助金额:
$ 19.6万 - 项目类别:
Continuing Grant
Lower and Upper Curvature Bounds: Topology vs. Geometry
曲率下界和曲率上界:拓扑与几何
- 批准号:
0604557 - 财政年份:2006
- 资助金额:
$ 19.6万 - 项目类别:
Standard Grant