Lower Curvature Bounds, Symmetries, and Topology
较低的曲率界限、对称性和拓扑
基本信息
- 批准号:1611780
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Award: DMS 1611780, Principal Investigator: Catherine E. Searle Global Riemannian geometry generalizes the classical Euclidean, Spherical and Hyperbolic geometries to a wide variety of geometric spaces in which the distance between points is described by minimizing the lengths of curves that join those points. Curvature or bending properties of Riemannian spaces generalize the visual sense we have that a sphere is round (positively curved, with the sense that curvature is related to the diameter of the sphere, and that a sphere of smaller diameter is more greatly curved than a sphere of large diameter) or Euclidean space is flat (of zero curvature). Differential geometers construct local ways to measure the curvature or bending properties of a geometry, and a major goal is to relate these local aspects of a Riemannian space to global properties that are much more flexible and are described as topology. For example, if a space has the property that around every point there is a neighborhood that is metrically identical to the arctic region of a sphere of radius 1, must the entire space turn out to be identical to that sphere? (The answer is no, but not by much.) What happens if those neighborhoods are merely close in metric properties to that arctic region - does changing from constant curvature to allowing small variations change that answer? Several versions of the notion of curvature are studied, summarizing local geometry in greater or lesser levels of detail, and manifolds with curvature bounds have been studied intensively since the inception of global Riemannian geometry. The projects supported by this grant will study symmetries of Riemannian manifolds and of some related spaces in the presence of lower bounds on curvature.This research program concerns both sectional curvature and Ricci curvature lower bounds and their corresponding generalizations to Alexandrov spaces, with an eye to gaining a deeper understanding of this largely unknown class of spaces. Basic problems in this agenda concern the following areas: (1) symmetries and topology of positively and non-negatively curved Riemannian manifolds and Alexandrov spaces and (2) symmetries and topology of Riemannian manifolds of positive Ricci curvature and almost non-negative sectional curvature. Classification problems in these regimes are both difficult and intriguing, and touch on several mathematical specialties that are neighbors of differential geometry, including Lie groups and their actions on manifolds, as well as algebraic topology.
奖项:DMS 1611780,主要研究者:Catherine E.塞尔整体黎曼几何将经典的欧几里得几何、球面几何和双曲几何推广到各种各样的几何空间,其中点之间的距离通过最小化连接这些点的曲线的长度来描述。 黎曼空间的曲率或弯曲性质推广了我们的视觉感觉,即球面是圆的(正弯曲的,曲率与球面的直径有关,并且直径较小的球面比直径较大的球面弯曲得更大)或欧几里得空间是平坦的(曲率为零)。微分几何学家构造局部方法来测量几何的曲率或弯曲性质,主要目标是将黎曼空间的这些局部方面与更灵活的全局性质联系起来,并被描述为拓扑。 例如,如果一个空间具有这样的性质,即在每一点周围都有一个邻域与半径为1的球体的北极区域度量相同,那么整个空间必须与该球体相同吗? (The答案是否定的,但不是很多)。 如果这些邻域只是在度量性质上接近北极地区,会发生什么?从恒定曲率改变为允许微小变化会改变答案吗? 几个版本的概念的曲率进行了研究,总结当地的几何或多或少的细节水平,和流形的曲率界已经深入研究以来成立的全球黎曼几何。该项目将研究黎曼流形和一些相关空间在曲率下界存在的情况下的对称性。该研究计划涉及截面曲率和Ricci曲率下界及其相应的推广到Alexandrov空间,以期对这类未知空间有更深入的了解。 基本问题在这个议程涉及以下领域:(1)对称性和拓扑的积极和非负弯曲的黎曼流形和亚历山德罗夫空间和(2)对称性和拓扑的黎曼流形的积极里奇曲率和几乎非负截面曲率。 在这些领域中的分类问题既困难又有趣,并且涉及微分几何的几个数学专业,包括李群及其在流形上的作用,以及代数拓扑。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Almost non-negatively curved 4-manifolds with torus symmetry
具有环面对称性的几乎非负弯曲 4 流形
- DOI:10.1090/proc/15093
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Harvey, John;Searle, Catherine
- 通讯作者:Searle, Catherine
Alexandrov spaces with integral current structure
- DOI:10.4310/cag.2021.v29.n1.a4
- 发表时间:2017-03
- 期刊:
- 影响因子:0.7
- 作者:Maree Jaramillo;Raquel Perales;Priyanka Rajan;C. Searle;Anna Siffert
- 通讯作者:Maree Jaramillo;Raquel Perales;Priyanka Rajan;C. Searle;Anna Siffert
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Searle其他文献
Regularization via Cheeger deformations
- DOI:
10.1007/s10455-015-9471-3 - 发表时间:
2015-06-07 - 期刊:
- 影响因子:0.700
- 作者:
Catherine Searle;Pedro Solórzano;Frederick Wilhelm - 通讯作者:
Frederick Wilhelm
Global G-Manifold Reductions and Resolutions
- DOI:
10.1023/a:1006740932080 - 发表时间:
2000-08-01 - 期刊:
- 影响因子:0.700
- 作者:
Karsten Grove;Catherine Searle - 通讯作者:
Catherine Searle
Mathematisches Forschungsinstitut Oberwolfach Report No . 01 / 2012 DOI : 10 . 4171 / OWR / 2012 / 01 Mini-Workshop : Manifolds with Lower Curvature Bounds
奥伯沃尔法赫数学研究所报告编号。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Guofang Wei;Catherine Searle - 通讯作者:
Catherine Searle
Linear Bounds for the Lengths of Geodesics on Manifolds with Curvature Bounded Below
- DOI:
10.1007/s12220-025-02003-6 - 发表时间:
2025-06-11 - 期刊:
- 影响因子:1.500
- 作者:
Isabel Beach;Haydée Contreras-Peruyero;Regina Rotman;Catherine Searle - 通讯作者:
Catherine Searle
Catherine Searle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Searle', 18)}}的其他基金
CAREER: Incorporating host phenology into the framework of biodiversity-disease relationships
职业:将寄主物候纳入生物多样性与疾病关系的框架中
- 批准号:
2044897 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
BEE: Evolutionary rescue in response to infectious disease: when will populations be rescued from pathogens?
BEE:应对传染病的进化救援:何时才能将人群从病原体中拯救出来?
- 批准号:
1856710 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Midwest Geometry Conference 2019-2021
中西部几何会议 2019-2021
- 批准号:
1856293 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Smoky Cascade Geometry Conference, March 19-21, 2014
Smoky Cascade 几何会议,2014 年 3 月 19-21 日
- 批准号:
1408592 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Topological and equivariant rigidity in the presence of lower curvature bounds
存在曲率下限时的拓扑刚度和等变刚度
- 批准号:
339994903 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Priority Programmes
Quasi-local mass and 3D Riemannian manifolds with curvature lower bounds
准局部质量和具有曲率下界的 3D 黎曼流形
- 批准号:
1935375 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Studentship
Geometry and Topology in the Presence of Lower Curvature Bounds
存在较低曲率界的几何和拓扑
- 批准号:
1209387 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Geometry and Topology in the Presence of Lower Curvature Bounds
存在较低曲率界的几何和拓扑
- 批准号:
0941615 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Manifolds with Lower Ricci Curvature Bounds
具有下里奇曲率界的流形
- 批准号:
0806016 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Geometry and Topology in the Presence of Lower Curvature Bounds
存在较低曲率界的几何和拓扑
- 批准号:
0706791 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Lower and Upper Curvature Bounds: Topology vs. Geometry
曲率下界和曲率上界:拓扑与几何
- 批准号:
0604557 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Riemannian metrics with lower curvature bounds. Special symplectic connections and symplectic realizations.
具有下曲率界限的黎曼度量。
- 批准号:
5406882 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Priority Programmes
Topology and Geometry of Manifolds with Lower Curvature Bounds
具有较低曲率界限的流形的拓扑和几何
- 批准号:
0352576 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Manifolds with Lower Curvature Bounds and Their Limits
具有较低曲率界限的流形及其极限
- 批准号:
0204187 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant