Bound States, Singularities, and Supersymmetry

束缚态、奇点和超对称性

基本信息

  • 批准号:
    0204188
  • 负责人:
  • 金额:
    $ 18.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT DMS - 0204188.The principal investigator will seek analytic realizations of "stringy"cohomology of singular varieties with trivial canonical bundle. He will studythe implications of such analytic realizations (and their generalizations)towards providing new explanations of gauge symmetry enhancement mechanisms instring theory. In collaboration with S. Sethi, the PI will continue his programto analyze the supersymmetric matrix model quantum mechanics which has been conjectured to provide a definition of M theory. Graduate student G. Firestone, will study the L2 index theory for the nonFredholm Dirac operators whose L2kernels give the ground states for this theory. Sethi and the PI will examinemethods for computing gravitational anomalies of field theories arising fromstring theories on singular spaces. S. Paban, S. Sethi, and the PI will examinethe constraints imposed by supersymmetry on deformations of the supersymmetryalgebra associated to an isolated five brane. The PI will investigate theextension of Witten's spinor technique of proving the positive mass conjecture by replacing the hypothesis of a smooth spin structure by the assumption of a spin structure degenerating on a codimension 2 submanifold.M theory gives a potential framework for providing a physical theory whichincorporates both gravitation and the quantum physics describing high energy particles. The precise form of this theory is not yet fully developed. The measurable consequences are even further from being fully worked out. This project attempts to determine, for branches of this theory, fundamental consequences, such as the number of particles of different types, when these particles combine to make more complex matter, and the size and shape of these particles and their combinations.In addition to developing the physical consequences of M and string theory,such computations can be used to check for potential errors in the underlying hypotheses of M theory. This project also seeks a better understanding of amathematical model for the physical interactions between certain "particles" known as 5 branes, whose existence is predicted by M theory.
摘要DMS -0204188.主要研究者将寻求具有平凡标准丛的奇异簇的“弦“上同调的解析实现。他将研究这种分析实现(及其推广)的含义,以提供弦理论中规范对称性增强机制的新解释。与S合作。塞西,PI将继续他的计划,以分析超对称矩阵模型量子力学,这已被证明是提供一个定义的M理论。研究生G.凡士通,将研究非Fredholm狄拉克算子的L2指数理论,其L2核给出了该理论的基态。塞西和PI将检查方法计算引力异常的场论所产生的弦理论在奇异空间。S. Paban,S. Sethi和PI将检查超对称性对与孤立的五膜相关的超代数变形的约束。PI将研究扩展维滕的旋量技术证明的正质量猜想通过取代假设的自旋结构退化的一个光滑的自旋结构上的一个余维2子流形。M理论提供了一个潜在的框架,提供一个物理理论,它结合了引力和描述高能粒子的量子物理。这一理论的确切形式尚未完全发展。可衡量的后果甚至还远未完全确定。这个项目试图确定,对于这个理论的分支,基本的后果,如不同类型的粒子的数量,当这些粒子联合收割机组合成更复杂的物质时,以及这些粒子及其组合的大小和形状。除了发展M和弦理论的物理后果,这样的计算可以用来检查M理论的基本假设中的潜在错误。该项目还寻求更好地理解某些称为5膜的“粒子”之间物理相互作用的数学模型,其存在由M理论预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Stern其他文献

<em>Drosophila</em> CtBP causes local inhibition of Dorsal and dCBP that regulate neuroectoderm genes
  • DOI:
    10.1016/j.ydbio.2008.05.482
  • 发表时间:
    2008-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Hitoshi Aihara;Myra Arcilla;Steve Lianoglou;Mark Stern;Yutaka Nibu
  • 通讯作者:
    Yutaka Nibu
Effect of iberdomide on cutaneous manifestations in systemic lupus erythematosus: A randomized phase 2 clinical trial
伊布替尼对系统性红斑狼疮皮肤表现的影响:一项随机 2 期临床试验
  • DOI:
    10.1016/j.jaad.2024.09.074
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    11.800
  • 作者:
    Victoria P. Werth;Joan T. Merrill;Richard Furie;Thomas Dörner;Ronald van Vollenhoven;Peter Lipsky;Michael Weiswasser;Shimon Korish;Peter H. Schafer;Mark Stern;Stan Li;Nikolay Delev
  • 通讯作者:
    Nikolay Delev
The corepressor dCtBP locally inhibits the Dorsal activator in the Drosophila embryo
  • DOI:
    10.1016/j.ydbio.2007.03.203
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yutaka Nibu;Hitoshi Aihara;Mark Stern
  • 通讯作者:
    Mark Stern
What Is the Role of the Bacterium <em>Propionibacterium acnes</em> in Type 1 Modic Changes? A Review of the Literature
  • DOI:
    10.1016/j.carj.2017.07.004
  • 发表时间:
    2017-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Georgy;Mark Stern;Kieran Murphy
  • 通讯作者:
    Kieran Murphy
Witten Spinors on Nonspin Manifolds

Mark Stern的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Stern', 18)}}的其他基金

Asymptotic Hodge Theory and Instantons
渐近霍奇理论和瞬子
  • 批准号:
    1005761
  • 财政年份:
    2010
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Positive Mass, Singularities, and Supersymmetry
正质量、奇点和超对称性
  • 批准号:
    0504890
  • 财政年份:
    2005
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
NonFredholm Index Theory, Matrix Models, and Hodge Theory
非Fredholm指数理论、矩阵模型和霍奇理论
  • 批准号:
    9870161
  • 财政年份:
    1998
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Hodge Structures and L2 Cohomology
数学科学:Hodge 结构和 L2 上同调
  • 批准号:
    9505040
  • 财政年份:
    1995
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
  • 批准号:
    8957224
  • 财政年份:
    1989
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    8807281
  • 财政年份:
    1988
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Some New Spectral Invariants and Their Relationship to Automorphic Forms and Geodesics
数学科学:一些新的谱不变量及其与自守形式和测地线的关系
  • 批准号:
    8601613
  • 财政年份:
    1986
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant

相似海外基金

The 2024 Gulf States Math Alliance Conference and Faculty Development Workshop
2024年海湾国家数学联盟会议暨教师发展研讨会
  • 批准号:
    2402471
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
  • 批准号:
    2305325
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Fellowship Award
Porous materials with interconvertible states
具有可相互转换状态的多孔材料
  • 批准号:
    24K17695
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
  • 批准号:
    EP/Y029194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Fellowship
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
CAREER: Enabling New States of Light in Mid-Wave Infrared Photonics for Gas Sensing Applications
职业:在气体传感应用的中波红外光子学中实现新的光态
  • 批准号:
    2340060
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
Channeling Excited States Towards New Productive Photochemical Pathways
将激发态引导至新的高效光化学途径
  • 批准号:
    2350308
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
  • 批准号:
    2400727
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
EEG Based Global Network Models and Platform for Brain States Assessment
基于脑电图的大脑状态评估全球网络模型和平台
  • 批准号:
    DP240102329
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Discovery Projects
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了