Second-order Automated Deduction
二阶自动扣除
基本信息
- 批准号:0204362
- 负责人:
- 金额:$ 18.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT0204362Beeson, MichaelSan Jose State Univ FdnThis award will enhance the theorem-prover Otter to cope better with second-order logic. It will use this enhanced version of Otter to formalize a small amount of elementary number theory, a small amount of set theory, and theorems about the cardinality of finite sets, as required to proceed to theorems in group theory as usually presented in an undergraduate course in algebra, up to and perhaps (but not necessarily) including the Sylow theorems. It will also enhance Otter by adding a capability for polynomial simplification, which in turn will enable it to proceed further in number theory. Although first-order group theory has been a source of many test problems for automated deduction, the material in an undergraduate course typically begins with theorems about subgroups and homomorphisms, and uses the concept of a prime number, so second-order logic (or set theory) and induction are essential ingredients to even sophomore-level mathematics. It is high time that theorem-provers be made able to cope with these fundamental areas of mathematics, which are naturally multi-sorted (elements, numbers, functions, and sets) and second-order (elements, cosets, subgroups).The long-term aim of automated deduction is to make the computer useful as a "mathematician's assistant". The goal is that the computer could check proofs, filling in any missing details, and verify their correctness. Perhaps the computer could carry out some of the simpler parts of the mathematics mechanically. Maybe (in the distant future) the computer might even prove interesting new theorems on a regular basis. At present computers can be used for some kinds of calculations, but their use for helping with proofs is in its infancy, in spite of half a century of research. Part of the problem is the richness of mathematical language; part of the problem is the complicated relationship between calculations and proofs; and part of the problem is the "needle-in-the-haystack" difficulty of finding a proof or disproof of an unsolved conjecture. Otter is a theorem-proving program developed at Argonne National Laboratories. This research will provide some enhancements to Otter that should help it deal with the "richness of language" problem and the "calculations within proofs" problem. To test the effectiveness of our efforts, the PI will try to "computerize" some theorems in mathematics that are usually taught in the sophomore or junior year to mathematics majors. These are theorems in an area of mathematics called "group theory", which usually comes after calculus and is widely used in many branches of mathematics and physics. Many of the theorems found in the first course in this subject have so far resisted attempts to get computers to prove them.
摘要0204362Beeson,Michael圣何塞州立大学Fdn该奖项将增强定理证明者Otter以更好地应对二阶逻辑。它将使用 Otter 的增强版本来形式化少量的初等数论、少量的集合论以及关于有限集基数的定理,按照需要进行群论定理(通常在代数本科课程中介绍),直到可能(但不一定)包括 Sylow 定理。 它还将通过添加多项式简化功能来增强 Otter,这反过来又使其能够在数论方面进一步发展。 尽管一阶群论一直是许多自动演绎测试问题的来源,但本科课程中的材料通常从有关子群和同态的定理开始,并使用素数的概念,因此二阶逻辑(或集合论)和归纳法甚至是大二数学的基本成分。现在是时候让定理证明者能够应对这些数学基本领域了,这些领域自然是多排序的(元素、数字、函数和集合)和二阶(元素、陪集、子群)。自动演绎的长期目标是使计算机成为“数学家的助手”。 目标是计算机可以检查证据,填写任何缺失的细节,并验证其正确性。 也许计算机可以机械地执行一些更简单的数学部分。 也许(在遥远的未来)计算机甚至可能定期证明有趣的新定理。 目前,计算机可以用于某些类型的计算,但尽管经过了半个世纪的研究,它们在帮助证明方面的应用仍处于起步阶段。 部分问题在于数学语言的丰富性; 部分问题在于计算和证明之间的复杂关系;部分问题在于,要找到未解决的猜想的证据或反驳,就像大海捞针一样困难。 Otter 是阿贡国家实验室开发的定理证明程序。这项研究将为 Otter 提供一些增强功能,帮助其处理“语言的丰富性”问题和“证明内的计算”问题。 为了测试我们努力的有效性,PI将尝试将一些通常在大二或大三向数学专业教授的数学定理“计算机化”。 这些是数学领域中称为“群论”的定理,通常出现在微积分之后,并广泛应用于数学和物理学的许多分支。 迄今为止,在本主题的第一门课程中发现的许多定理都未能通过计算机来证明它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Beeson其他文献
Larry Wos: Visions of Automated Reasoning
- DOI:
10.1007/s10817-022-09620-8 - 发表时间:
2022-02-28 - 期刊:
- 影响因子:0.800
- 作者:
Michael Beeson;Maria Paola Bonacina;Michael Kinyon;Geoff Sutcliffe - 通讯作者:
Geoff Sutcliffe
The meaning of infinity in calculus and computer algebra systems
微积分和计算机代数系统中无穷大的含义
- DOI:
10.1016/j.jsc.2004.12.002 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Michael Beeson;F. Wiedijk - 通讯作者:
F. Wiedijk
On interior branch points of minimal surfaces
- DOI:
10.1007/bf01176704 - 发表时间:
1980-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Michael Beeson - 通讯作者:
Michael Beeson
Some results on finiteness in Plateau's problem, part I
- DOI:
10.1007/bf01674441 - 发表时间:
1980-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Michael Beeson - 通讯作者:
Michael Beeson
Double-Negation Elimination in Some Propositional Logics
- DOI:
10.1007/s11225-005-8469-4 - 发表时间:
2005-08-01 - 期刊:
- 影响因子:0.600
- 作者:
Michael Beeson;Robert Veroff;Larry Wos - 通讯作者:
Larry Wos
Michael Beeson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Beeson', 18)}}的其他基金
RUI: Logic and Computation: Automating Proofs in Calculus and Analysis in Teacher Preparation
RUI:逻辑与计算:微积分中的自动化证明和教师准备中的分析
- 批准号:
9528913 - 财政年份:1996
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
A Computer Laboratory for Learning Algebra, Trigonometry andCalculus
学习代数、三角学和微积分的计算机实验室
- 批准号:
9050894 - 财政年份:1990
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
Advances in Computer-Assisted Instruction (Information Science)
计算机辅助教学的进展(信息科学)
- 批准号:
8511176 - 财政年份:1985
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
Mathematical Sciences: Constructive Set Theory
数学科学:构造性集合论
- 批准号:
8303288 - 财政年份:1983
- 资助金额:
$ 18.81万 - 项目类别:
Standard Grant
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
体内亚核小体图谱的绘制及其调控机制研究
- 批准号:32000423
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CTCF/cohesin介导的染色质高级结构调控DNA双链断裂修复的分子机制研究
- 批准号:32000425
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
异染色质修饰通过调控三维基因组区室化影响机体应激反应的分子机制
- 批准号:31970585
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
骨髓间充质干细胞成骨成脂分化过程中染色质三维构象改变与转录调控分子机制研究
- 批准号:31960136
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
染色质三维结构等位效应的亲代传递研究
- 批准号:31970586
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
染色质三维构象新型调控因子的机制研究
- 批准号:31900431
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
转座因子调控多能干细胞染色质三维结构中的作用
- 批准号:31970589
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Kummer扩张的代数几何码的若干问题研究
- 批准号:11701317
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Automated Electrophoresis Platform to Streamline Validations of Biomedical Samples
自动化电泳平台可简化生物医学样品的验证
- 批准号:
10710812 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
23-016713 NHLBI, ITAC REQUIRES RENEWAL OF ITS INFRASTRUCTURE AS CODE (IAC) SOFTWARE SOLUTION, CHEF, IN ORDER TO SUPPORT NHLBI'S MISSION NEEDS FOR THE AUTOMATED CONFIGURATION AND MANAGEMENT OF NHLBI S
23-016713 NHLBI、ITAC 要求更新其基础设施作为代码 (IAC) 软件解决方案、CHEF,以支持 NHLBI 对 NHLBI S 的自动化配置和管理的任务需求
- 批准号:
10974181 - 财政年份:2023
- 资助金额:
$ 18.81万 - 项目类别:
Development of an automated IVD for the ultra-sensitive, direct, molecular detection of Borrelia for early Lyme Disease
开发自动化 IVD,用于对早期莱姆病的疏螺旋体进行超灵敏、直接的分子检测
- 批准号:
10404611 - 财政年份:2020
- 资助金额:
$ 18.81万 - 项目类别:
Development of an automated IVD for the ultra-sensitive, direct, molecular detection of Borrelia for early Lyme Disease
开发自动化 IVD,用于对早期莱姆病的疏螺旋体进行超灵敏、直接的分子检测
- 批准号:
10077755 - 财政年份:2020
- 资助金额:
$ 18.81万 - 项目类别:
In-cell Automated Flash Oxidation (IC-AutoFox™) Protein Footprinting System
细胞内自动闪式氧化 (IC-AutoFox™) 蛋白质足迹系统
- 批准号:
10589128 - 财政年份:2020
- 资助金额:
$ 18.81万 - 项目类别:
In-cell Automated Flash Oxidation (IC-AutoFox™) Protein Footprinting System
细胞内自动闪式氧化 (IC-AutoFox™) 蛋白质足迹系统
- 批准号:
10478371 - 财政年份:2020
- 资助金额:
$ 18.81万 - 项目类别:
Development of an automated IVD for the ultra-sensitive, direct, molecular detection of Borrelia for early Lyme Disease
开发自动化 IVD,用于对早期莱姆病的疏螺旋体进行超灵敏、直接的分子检测
- 批准号:
10192650 - 财政年份:2020
- 资助金额:
$ 18.81万 - 项目类别:
Automated Dynamic Lists for Efficient Electronic Health Record Management
用于高效电子健康记录管理的自动化动态列表
- 批准号:
8830154 - 财政年份:2014
- 资助金额:
$ 18.81万 - 项目类别:
Effective Higher-Order Automated Theorem Proving
有效的高阶自动定理证明
- 批准号:
241609402 - 财政年份:2014
- 资助金额:
$ 18.81万 - 项目类别:
Research Grants
Automated Problem and Allergy Lists Enrichment Based on High Accuracy Information Extraction from the Electronic Health Record
基于电子健康记录中高精度信息提取的自动化问题和过敏列表丰富
- 批准号:
9138574 - 财政年份:2013
- 资助金额:
$ 18.81万 - 项目类别: