Automated Problem and Allergy Lists Enrichment Based on High Accuracy Information Extraction from the Electronic Health Record
基于电子健康记录中高精度信息提取的自动化问题和过敏列表丰富
基本信息
- 批准号:9138574
- 负责人:
- 金额:$ 68.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse drug eventCancer PatientCaringCessation of lifeCitiesClinicalCodeCommunications MediaComplexDevelopmentDiseaseElectronic Health RecordElectronicsEnsureEnvironmentExcisionGoalsHealth Insurance Portability and Accountability ActHealth PersonnelHealthcareHospitalsHuntsman Cancer Institute at the University of UtahHybridsHypersensitivityImageryIncentivesInjuryInpatientsInstitutesLaboratoriesMalignant NeoplasmsManualsMarketingMedicalMedical ErrorsMedication ErrorsMethodsNatural Language ProcessingOutpatientsOutputPatientsPerformancePharmaceutical PreparationsPhaseProcessReference StandardsReportingRiskSamplingSecureSiteSodium ChlorideSpeedStructureSystemTest ResultTestingTextTimeTrainingUnited States Centers for Medicare and Medicaid ServicesUniversitiesUtahWorkbasecommercial applicationcommercializationcomputerized physician order entrydesignimprovedpaymentpreventprocessing speedprototypepublic health relevancesoftware developmentstandard measureusabilityweb services
项目摘要
DESCRIPTION (provided by applicant): Medical errors are recognized as the cause of numerous deaths, and even if some are difficult to avoid, many are preventable. Computerized physician order-entry systems with decision support have been proposed to reduce this risk of medication errors, but these systems rely on structured and coded information in the electronic health record (EHR). Unfortunately, a substantial proportion of the information available in the EHR is only mentioned in narrative clinical documents. Electronic lists of problems and allergies are available in most EHRs, but they require manual management by their users, to add new problems, modify existing ones, and the removal of the ones that are irrelevant. Consequently, these electronic lists are often incomplete, inaccurate, and out of date. Clinacuity, Inc. proposed
a new system to automatically extract structured and coded medical problems and allergies from clinical narrative text in the EHR of patients suffering from cancer, and established its feasibility. To advance this new system from a prototype to an accurate, adaptable, and robust system, integrated into the commercial EHR system used in our implementation and testing site (Huntsman Cancer Institute and University of Utah Hospital, Salt Lake City, Utah), and ready for commercialization efforts, we will work on the following aims: 1) enhance the NLP system performance, scalability, and quality, 2) develop an advanced visualization interface for local adaptation of the NLP system, and 3) integrate the NLP system with a commercial EHR system. A large and varied reference standard for training and testing the information extraction application will also be developed, a reference standard including a random sample of de-identified clinical narratives from patients treated at the Huntsman Cancer Institute and at the University of Utah Hospital (Salt Lake City, Utah), with problems and allergies annotated by domain experts. Commercial application: The system Clinacuity proposes will not only help healthcare providers maintain complete and timely lists of problems and allergies, providing them with an efficient overview of a patient, but also help healthcare organizations attain meaningful use requirements. The proposed system has potential commercial applications in inpatient and outpatient settings, increasing the efficiency of busy healthcare providers by saving time, and aiding healthcare organizations in demonstrating "meaningful use" and obtaining Centers for Medicare & Medicaid Services incentive payments. Clinacuity will further extend the commercial potential of the system and its output, using modular design principles allowing utilization of each module independently, and enhancing its local adaptability for easier deployment.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHANE MEYSTRE其他文献
STEPHANE MEYSTRE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHANE MEYSTRE', 18)}}的其他基金
Clinical Text Automatic De-Identification to Support Large Scale Data Reuse and Sharing
临床文本自动去识别化,支持大规模数据重用和共享
- 批准号:
9908962 - 财政年份:2016
- 资助金额:
$ 68.49万 - 项目类别:
Automated Dynamic Lists for Efficient Electronic Health Record Management
用于高效电子健康记录管理的自动化动态列表
- 批准号:
8830154 - 财政年份:2014
- 资助金额:
$ 68.49万 - 项目类别:
Automated Dynamic Lists for Efficient Electronic Health Record Management
用于高效电子健康记录管理的自动化动态列表
- 批准号:
8590856 - 财政年份:2013
- 资助金额:
$ 68.49万 - 项目类别:
Automated Dynamic Lists for Efficient Electronic Health Record Management
用于高效电子健康记录管理的自动化动态列表
- 批准号:
8926527 - 财政年份:2013
- 资助金额:
$ 68.49万 - 项目类别:
Automated Problem and Allergy Lists Enrichment Based on High Accuracy Information Extraction from the Electronic Health Record
基于电子健康记录中高精度信息提取的自动化问题和过敏列表丰富
- 批准号:
9357564 - 财政年份:2013
- 资助金额:
$ 68.49万 - 项目类别:
相似海外基金
Research Project 2 Proteogenomic-guided therapeutic targeting of breast cancer patient-derived xenograft metastases
研究项目 2 蛋白质基因组引导的乳腺癌患者异种移植转移的治疗靶向
- 批准号:
10733315 - 财政年份:2023
- 资助金额:
$ 68.49万 - 项目类别:
SQLE and Sterols Contribute to Racial Disparity in ER+ Breast Cancer Patient Survival
SQLE 和甾醇导致 ER 乳腺癌患者生存率的种族差异
- 批准号:
10571020 - 财政年份:2023
- 资助金额:
$ 68.49万 - 项目类别:
Establishing industrial production of components that enable expanding accessibility of PET imaging to cancer patient population.
建立组件的工业化生产,使癌症患者群体能够更容易地获得 PET 成像。
- 批准号:
10698218 - 财政年份:2023
- 资助金额:
$ 68.49万 - 项目类别:
Washington University PDX Development and Trial Center - Evaluation of Abemaciclib in Combination with Olaparib in Ovarian Cancer and Breast Cancer Patient-derived Xenograft Models
华盛顿大学 PDX 开发和试验中心 - Abemaciclib 联合 Olaparib 在卵巢癌和乳腺癌患者异种移植模型中的评估
- 批准号:
10582164 - 财政年份:2022
- 资助金额:
$ 68.49万 - 项目类别:
Towards Cancer Patient Empowerment for Optimal Use of Antithrombotic Therapy at the End of Life
增强癌症患者在临终时最佳使用抗血栓治疗的能力
- 批准号:
10039823 - 财政年份:2022
- 资助金额:
$ 68.49万 - 项目类别:
EU-Funded
Convening a gynecologic cancer patient advisory group to adapt a digital health tool
召集妇科癌症患者咨询小组以采用数字健康工具
- 批准号:
460767 - 财政年份:2022
- 资助金额:
$ 68.49万 - 项目类别:
Miscellaneous Programs
Towards Cancer Patient Empowerment for Optimal Use of Antithrombotic Therapy at the End of Life
增强癌症患者在临终时最佳使用抗血栓治疗的能力
- 批准号:
10038000 - 财政年份:2022
- 资助金额:
$ 68.49万 - 项目类别:
EU-Funded
Longitudinal mixed method investigation of social networks and affective states as determinants of smoking behavior among cancer patient
社会网络和情感状态作为癌症患者吸烟行为决定因素的纵向混合方法调查
- 批准号:
10513670 - 财政年份:2021
- 资助金额:
$ 68.49万 - 项目类别:
Improving the translational value of head and neck cancer patient-in-mouse models
提高头颈癌小鼠模型的转化价值
- 批准号:
10598311 - 财政年份:2021
- 资助金额:
$ 68.49万 - 项目类别:
Improving the translational value of head and neck cancer patient-in-mouse models
提高头颈癌小鼠模型的转化价值
- 批准号:
10442585 - 财政年份:2021
- 资助金额:
$ 68.49万 - 项目类别:














{{item.name}}会员




