Isotropic Stable Random Fields and Infinite Dimensional Stochastic Integrals
各向同性稳定随机场和无限维随机积分
基本信息
- 批准号:0204992
- 负责人:
- 金额:$ 10.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-09-01 至 2006-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0204992Rosinski A novel approach, based on infinite dimensional group representations, is proposed for the analysis of isotropic and isotropic homogeneous stable random fields. There are many analogies between problems considered in this project and representation theory in quantum physics, in particular, Mackey's theory. This project is intended to build on these analogies to establish spectral representation of isotropic stable random fields in possibly the most explicit form that could be used for analysis, modeling and computer simulation of such random fields. The second part of this proposal is concerned with infinite dimensional stochastic integrals. Various sample path properties of stochastic processes, such as continuity and boundedness, can often be described in terms of the existence of such infinite dimensional stochastic integrals. It is proposed to simplify and unify the present approach to infinite dimensional stochastic integrals of deterministic functions and then to extend these results to nonanticipating integrands using decoupling techniques, among others. This is an outgrowth of the present research of the PI with Professor Michael B. Marcus. Development of stochastic integrals with respect to cylindrical semimartingales in Hilbert spaces is also proposed. This development will follow a recent progress of the PI and his collaborators on the radonification of cylindrical semimartingales. Isotropic random fields play an important role in the statistical theory of turbulence and other areas of natural sciences and engineering. They can be used to model 3-dimensional turbulent velocity, velocity and pressure, etc. The classical theory of isotropic random fields is not suitable for modeling random phenomena with long range dependence and high variability, that are often observed. Therefore, the PI proposes to investigate isotropic random fields with heavy tailed stable distributions. Puzzling connections with certain methods of quantum physics are found under this approach; they will be further investigated and exploited. The second part of this proposal is concerned with the theory and applications of infinite dimensional stochastic integrals. The importance and need for the study of such integrals comes from the theory of random systems characterized by very large or continuous set of parameters. Infinite dimensional approach makes such systems simpler and mathematically tractable.
0204992 Rosinski基于无限维群表示,提出了一种分析各向同性和各向同性均匀稳定随机场的新方法.在这个项目中考虑的问题和量子物理学中的表示论,特别是麦基理论之间有许多相似之处。该项目旨在建立在这些类比,以建立各向同性稳定随机场的频谱表示,可能是最明确的形式,可用于分析,建模和计算机模拟这样的随机场。这个建议的第二部分是关于无穷维随机积分。随机过程的各种样本路径性质,如连续性和有界性,通常可以用这种无穷维随机积分的存在性来描述。建议简化和统一本方法的无穷维确定性函数的随机积分,然后将这些结果扩展到非预期的被积使用解耦技术,除其他外。这是迈克尔B教授的PI目前研究的产物。马库斯本文还提出了Hilbert空间中关于圆柱半鞅的随机积分的发展。这一发展将遵循最近的进展PI和他的合作者对radonification的圆柱半鞅。 各向同性随机场在湍流统计理论以及其他自然科学和工程领域中起着重要的作用。它们可以用来模拟三维湍流速度,速度和压力,等各向同性随机场的经典理论是不适合模拟随机现象与长程相关和高变异性,经常观察到的。因此,PI建议研究具有重尾稳定分布的各向同性随机场。在这种方法下发现了与量子物理学某些方法的令人困惑的联系;它们将被进一步研究和利用。第二部分是关于无穷维随机积分的理论和应用。这种积分的研究的重要性和必要性来自随机系统的理论,其特征在于非常大或连续的参数集。无限维的方法使这样的系统更简单,数学上容易处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Rosinski其他文献
Automatic isokinetic sampling
- DOI:
10.1007/bf03185028 - 发表时间:
1956-03-01 - 期刊:
- 影响因子:2.400
- 作者:
Jan Rosinski;Al Lieberman - 通讯作者:
Al Lieberman
Mechanism of ice formation in seeded convective storms
- DOI:
10.1007/bf01593092 - 发表时间:
1972-03-01 - 期刊:
- 影响因子:1.600
- 作者:
Jan Rosinski;T. C. Kerrigan - 通讯作者:
T. C. Kerrigan
Jan Rosinski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Rosinski', 18)}}的其他基金
Support for the US participants of the 6th Levy Conference; Technical University of Dresden, Germany; July 2010
支持第六届征费会议的美国参与者;
- 批准号:
1007460 - 财政年份:2010
- 资助金额:
$ 10.82万 - 项目类别:
Standard Grant
Infinitely Divisible Processes and Related Topics
无限可分过程及相关主题
- 批准号:
9704744 - 财政年份:1997
- 资助金额:
$ 10.82万 - 项目类别:
Continuing grant
Mathematical Sciences: Structure of Stationary Stable and Other Infinitely Divisible Processes
数学科学:稳态稳定和其他无限可分过程的结构
- 批准号:
9406294 - 财政年份:1994
- 资助金额:
$ 10.82万 - 项目类别:
Standard Grant
相似国自然基金
超α-stable过程及相关过程的大偏差理论
- 批准号:10926110
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
与稳定(Stable)过程有关的极限定理
- 批准号:10901054
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
基于Alpha-stable分布的SAR影像建模与分析方法研究
- 批准号:40871199
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 10.82万 - 项目类别:
Standard Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
$ 10.82万 - 项目类别:
Continuing Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303525 - 财政年份:2024
- 资助金额:
$ 10.82万 - 项目类别:
Standard Grant
Development of highly efficient and stable photon-counting type X-ray detectors using single crystal metal halide perovskite semiconductors
利用单晶金属卤化物钙钛矿半导体开发高效稳定的光子计数型X射线探测器
- 批准号:
24K15592 - 财政年份:2024
- 资助金额:
$ 10.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GreenPerovs: Green, Efficient, and Stable Halide Perovskites for Heterogeneous Photocatalysis
GreenPerovs:用于多相光催化的绿色、高效、稳定的卤化物钙钛矿
- 批准号:
EP/Y029291/1 - 财政年份:2024
- 资助金额:
$ 10.82万 - 项目类别:
Fellowship
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303524 - 财政年份:2024
- 资助金额:
$ 10.82万 - 项目类别:
Standard Grant
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
- 批准号:
EP/Y032942/1 - 财政年份:2024
- 资助金额:
$ 10.82万 - 项目类别:
Research Grant
MELISA: Molecular Engineering of Contact Interfaces for Long-Term Stable Perovskite Photovoltaics
MELISA:长期稳定钙钛矿光伏接触界面的分子工程
- 批准号:
EP/Z000971/1 - 财政年份:2024
- 资助金额:
$ 10.82万 - 项目类别:
Fellowship














{{item.name}}会员




