Spin-orbit coupling in correlated quantum wires: novel phases and spin-transport

相关量子线中的自旋轨道耦合:新相和自旋输运

基本信息

项目摘要

Quasi one-dimensional quantum wires are discussed äs building blocks of future spin-based devices for information processing (spintronics). In particular, several quantum wire based Setups were proposed äs spin-filters operating in presence of Rashba spin-orbit coupling. To gain optimal control over the spin only the first subband of the wire should be occupied (strictly one-dimensional System). In most of the theoretical studies the Coulomb repulsion between the involved electrons is neglected. For strictly one-dimensional Systems without spin-orbit coupling the twoparticle (Coulomb) interaction is known to have a dramatic effect on the low-energy physics. It can lead to phases with gaps in the spin and/or Charge excitation spectrum. But even in Systems which remain metallic (Luttinger liquids) the low-energy spectral and transport properties are strongly altered, in particular in the presence of inhomogeneities such äs contacts to higher-dimensional leads. For a detailed understanding of the performance of future quantum wire based spintronic devices it is thus mandatory to gain a thorough theoretical understanding of the interplay of spinorbit interaction and electron correlations in such Systems. We will focus on two particular aspects: a) possible novel phases resulting from this interplay and b) characteristic spin-transport properties in inhomogeneous wires.
准一维量子线是未来自旋信息处理器件(自旋电子学)的基石。特别地,提出了几种基于量子线的设置,其在存在Rashba自旋轨道耦合的情况下操作的自旋过滤器。为了获得对自旋的最佳控制,只应该占据金属丝的第一个子带(严格的一维系统)。在大多数的理论研究中,所涉及的电子之间的库仑排斥被忽略。对于没有自旋轨道耦合的严格一维系统,两粒子(库仑)相互作用对低能物理有着显著的影响。它可以导致在自旋和/或电荷激发光谱中具有间隙的相位。但是,即使在仍然是金属的系统(Luttinger液体)中,低能光谱和输运性质也会发生强烈的改变,特别是在存在非均匀性的情况下,例如与高维铅的接触。为了详细了解未来基于量子线的自旋电子器件的性能,因此必须对这种系统中的自旋轨道相互作用和电子相关性的相互作用进行彻底的理论理解。我们将集中在两个特定的方面:a)可能的新的阶段,从这种相互作用和B)特征自旋输运性质的非均匀线。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Sabine Andergassen其他文献

Professorin Dr. Sabine Andergassen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Sabine Andergassen', 18)}}的其他基金

Merging of dynamical mean-field theory and functional renormalization group
动力学平均场理论与泛函重正化群的融合
  • 批准号:
    299305516
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Realistic effective interactions from the functional renormalization group
来自功能重正化群的现实有效相互作用
  • 批准号:
    267991720
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Spin-transport and spin-coherence in quantum wires and quantum dots, carbon nanotubes and graphene, spin-orbit interaction
量子线和量子点、碳纳米管和石墨烯中的自旋输运和自旋相干性、自旋轨道相互作用
  • 批准号:
    64120101
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Units
Functional RG in nonequilibrium
非平衡状态下的功能性 RG
  • 批准号:
    35776639
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Units
Microscopic derivation of effective lattice model Hamiltonians for long-range interacting atoms
长程相互作用原子有效晶格模型哈密顿量的微观推导
  • 批准号:
    500494410
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

铁磁体/拓扑绝缘体异质结磁性邻近效应及Spin Orbit Torque研究
  • 批准号:
    11574129
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目

相似海外基金

Light-spin interconversion in heavy metals with strong spin orbit coupling
具有强自旋轨道耦合的重金属中的轻自旋互变
  • 批准号:
    22KJ0496
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploring novel quantum phenomena induced by spin-orbit coupling and quantum interference effects
探索自旋轨道耦合和量子干涉效应引起的新颖量子现象
  • 批准号:
    23KJ0783
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Harvesting electronic flat bands and strong spin-orbit coupling for novel functionalities in metal monochalcogenides
合作研究:收获电子平带和强自旋轨道耦合以实现金属单硫族化物的新功能
  • 批准号:
    2219003
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Ultrafast femtosecond laser control of electron dynamics in two-dimensional strong spin-orbit coupling materials
二维强自旋轨道耦合材料中电子动力学的超快飞秒激光控制
  • 批准号:
    22K13991
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spin-orbit coupling and dimensionality at the heart of quantum magnetism of heavy transition metal oxides
重过渡金属氧化物量子磁性核心的自旋轨道耦合和维数
  • 批准号:
    EP/W00562X/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Proposal: Harvesting electronic flat bands and strong spin-orbit coupling for novel functionalities in metal monochalcogenides
合作提案:收获电子平带和强自旋轨道耦合以实现金属单硫属化物的新功能
  • 批准号:
    2219048
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Coherent quantum information platform with spin-orbit coupling in silicon
硅中自旋轨道耦合的相干量子信息平台
  • 批准号:
    RGPIN-2019-04150
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Structural Control of Spin-Orbit Coupling
职业:自旋轨道耦合的结构控制
  • 批准号:
    2046020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Coherent quantum information platform with spin-orbit coupling in silicon
硅中自旋轨道耦合的相干量子信息平台
  • 批准号:
    RGPIN-2019-04150
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Designing Topological Superconductors from Spin-Orbit Coupling in Iridium Oxide Superlattices
利用氧化铱超晶格中的自旋轨道耦合设计拓扑超导体
  • 批准号:
    534657-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了