Constraining Bias via Clustering in Galaxy Surveys

通过星系调查中的聚类来限制偏差

基本信息

  • 批准号:
    0206243
  • 负责人:
  • 金额:
    $ 25.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-09-01 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

AST 0206243SzapudiCurrent cosmological theories imply that the stars, galaxies and clusters of galaxies that we can see represent only a relatively small fraction of the matter content of the universe. Most of the matter is in a form unknown to us, and can be detected only through its gravitational pull. The nature of this ``Dark Matter'' is the single most interesting problem in contemporary theoretical physics, and its study involves the amalgamation of information from different disciplines, such as particle physics, astronomy, and cosmology. The present project aims to constrain the properties of this elusive dark matter by looking at ``bias'', the difference between the statistical properties of visible and dark matter.According to current theories of structure formation, small initial fluctuations in the early Universe grew under the influence of gravity until the large-scale structures which, we see at the present day, formed. It appears that galaxies formed where the underlying dark matter concentrated in clumps (called halos). Thus, the present distribution of galaxies depends both on the distribution of dark matter and on the efficiency with which dark matter halos turn into galaxies. Novel statistical measures developed by Dr. Szapudi and his collaborators will be used to characterize the present-day distribution of galaxies using data from on-going wide field surveys (e.g., the Sloan Digital Sky Survey) which encompass up to a million objects. Then the theory of bias will be applied to these measured distributions to constrain the distribution of the underlying dark matter. This distribution, in turn can be used to test predictions from the various phenomenological and fundamental theories which have been developed to describe the "Dark Matter".***
AST 0206243Szapudi 当前的宇宙学理论表明,我们所看到的恒星、星系和星系团仅代表宇宙物质含量的相对较小的一部分。大多数物质的形式是我们未知的,只能通过其引力来探测。这种“暗物质”的本质是当代理论物理学中最有趣的问题,其研究涉及来自不同学科的信息的融合,例如粒子物理学、天文学和宇宙学。目前的项目旨在通过观察“偏差”(可见物质和暗物质的统计特性之间的差异)来限制这种难以捉摸的暗物质的特性。根据当前的结构形成理论,早期宇宙的微小初始波动在重力的影响下不断增长,直到我们今天看到的大规模结构形成。星系似乎是在底层暗物质集中成团(称为晕)的地方形成的。因此,目前星系的分布既取决于暗物质的分布,也取决于暗物质晕变成星系的效率。 Szapudi 博士和他的合作者开发的新颖统计方法将用于利用正在进行的广域巡天(例如斯隆数字巡天)的数据来描述当前星系的分布,这些巡天观测涵盖了多达一百万个天体。然后,偏差理论将应用于这些测量的分布,以约束潜在暗物质的分布。这种分布反过来可用于测试各种现象学和基础理论的预测,这些理论是为描述“暗物质”而开发的。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Istvan Szapudi其他文献

Istvan Szapudi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Istvan Szapudi', 18)}}的其他基金

Large Scale Structure Studies on a Value Added Galaxy Catalog
增值星系目录的大尺度结构研究
  • 批准号:
    1616974
  • 财政年份:
    2016
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
Information Repackaging via Multiresolution Transforms
通过多分辨率变换进行信息重新包装
  • 批准号:
    0434413
  • 财政年份:
    2004
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant

相似国自然基金

基于mGWAS解析莲特异的苄基异喹啉生物碱(BIAs)合成的关键基因
  • 批准号:
    32170388
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
基于mGWAS解析莲特异的苄基异喹啉生物碱(BIAs)合成的关键基因
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:

相似海外基金

Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
  • 批准号:
    2324401
  • 财政年份:
    2024
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
CAREER: Causal Modeling for Data Quality and Bias Mitigation
职业:数据质量和偏差缓解的因果建模
  • 批准号:
    2340124
  • 财政年份:
    2024
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Continuing Grant
I-Corps: Virtual Reality Training Platform for Increasing Awareness of Unconscious Bias in Industry Decision-Making
I-Corps:虚拟现实培训平台,用于提高行业决策中无意识偏见的意识
  • 批准号:
    2402141
  • 财政年份:
    2024
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
  • 批准号:
    2324402
  • 财政年份:
    2024
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Standard Grant
ELOQUENCE - Multilingual and Cross-cultural interactions for context-aware, and bias-controlled dialogue systems for safety-critical applications
ELOQUENCE - 用于安全关键应用的上下文感知和偏差控制对话系统的多语言和跨文化交互
  • 批准号:
    10092660
  • 财政年份:
    2024
  • 资助金额:
    $ 25.88万
  • 项目类别:
    EU-Funded
Industrial Research into ASR Bias'
ASR 偏差的工业研究
  • 批准号:
    10093501
  • 财政年份:
    2024
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Collaborative R&D
Improving Typhoon Track Forecasts through Physics-Based Bias Correction
通过基于物理的偏差校正改进台风路径预报
  • 批准号:
    23H01665
  • 财政年份:
    2023
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Examining the patterns and mechanisms of developmental bias: a major force in evolution and disease
检查发育偏差的模式和机制:进化和疾病的主要力量
  • 批准号:
    2883502
  • 财政年份:
    2023
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Studentship
Developing computational methods to minimise social bias in healthcare AI
开发计算方法以尽量减少医疗保健人工智能中的社会偏见
  • 批准号:
    2868742
  • 财政年份:
    2023
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Studentship
CAREER: Investigating the Noun Bias in Early Language Acquisition
职业:研究早期语言习得中的名词偏差
  • 批准号:
    2238609
  • 财政年份:
    2023
  • 资助金额:
    $ 25.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了