NIRT: Nanoscale Organic Circuits and Sensors

NIRT:纳米级有机电路和传感器

基本信息

  • 批准号:
    0210698
  • 负责人:
  • 金额:
    $ 160万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-08-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

AbstractThis proposal was received in response to Nanoscale Science and Engineering initiative, NSF 01-157, category NIRT. It focuses on organic semiconductor based nanoscale transistors, a particularly important area of activity where much remains to be understood and discovered. Organic nanoscale transistors make use of fabrication approaches ranging from molecular self-assembly to advanced nanolithography. This, together with the considerable flexibility in designing and synthesizing a range of semiconducting materials offers hope that such devices may one day be components in a new generation of electronic circuits. The ability to confine and manipulate electric charges on the spatial scale of a molecule is an important advantage for molecular electronics. The proposed project aims at combining self-assembly and advanced nanolithography to realize two families of nanoscale transistor devices that will enable the systematic evaluation of these devices as components in electronic circuits. Crucial to the study is the use of advanced high k dielectrics in organic nano-transistors. This will lower the operating voltage of the devices as well as permit the induction of very large densities of charge, which in turn has been shown to open up new domains in charge transport with associated applications. The project will involve device characterization by conventional methods as well as by scanning probe methods. Additionally, it will involve extensive characterization of interfaces between organic semiconductors and gate insulators, and morphological characterization of self-assembled organic layers with a lateral resolution down to 1 nm. Large-area organic transistors have been shown in the recent past to have unique properties such as chemical sensing and light-emission. The chemical sensing aspects of nanotransistors will be examined in detail for the first time This study will combine chemical design of semiconductors with receptor groups to bind specific analytes with detailed characterization of the chemical nature of the interaction between semiconductor and analyte. Among other properties of nanoscale transistors that will be explored is superconductivity. Superconductivity has been observed recently in large-area polymer transistors and among the suggested applications of such transistors includes quantum information processing. Finally, a new approach to fabricate circuits is proposed in which the organic nano-transistor circuitry is compatible with Si-circuitry. This architecture permits (in principle) the sharing of functionality between the Si circuitry and the organic circuitry. The key aspect of the fabrication scheme is the use of an up-side down approach to fabricate organic circuitry, in which the interconnects are defined first followed by the gate level and finally the source-drain level. Thus the fragile molecular materials are not exposed to harsh processing environments.
摘要本研究是在纳米尺度科学与工程计划(NSF 01-157,类别NIRT)中提出的。它侧重于基于有机半导体的纳米级晶体管,这是一个特别重要的活动领域,仍有许多有待了解和发现。有机纳米级晶体管的制造方法从分子自组装到先进的纳米光刻。这一点,再加上设计和合成一系列半导体材料的相当大的灵活性,使这种器件有一天可能成为新一代电子电路的组成部分。在分子的空间尺度上限制和操纵电荷的能力是分子电子学的一个重要优势。该项目旨在结合自组装和先进的纳米光刻技术来实现两个纳米级晶体管器件家族,从而能够系统地评估这些器件作为电子电路中的组件。这项研究的关键是在有机纳米晶体管中使用先进的高k介电体。这将降低器件的工作电压,并允许感应非常大的电荷密度,这反过来又被证明在电荷传输和相关应用中开辟了新的领域。该项目将包括通过传统方法以及扫描探针方法对器件进行表征。此外,它将涉及有机半导体和栅极绝缘体之间界面的广泛表征,以及自组装有机层的形态表征,其横向分辨率低至1nm。近年来,大面积有机晶体管已被证明具有独特的性能,如化学传感和光发射。纳米晶体管的化学传感方面将首次被详细研究。这项研究将结合半导体的化学设计和受体群,结合特定的分析物,详细描述半导体和分析物之间相互作用的化学性质。纳米级晶体管的其他特性将被探索的是超导性。超导性最近在大面积聚合物晶体管中被观察到,这种晶体管的建议应用包括量子信息处理。最后,提出了一种有机纳米晶体管电路与硅电路兼容的新型电路制作方法。这种架构允许(原则上)在硅电路和有机电路之间共享功能。制造方案的关键方面是使用上下方向的方法来制造有机电路,其中首先定义互连,然后定义栅极电平,最后定义源漏电平。因此,易碎的分子材料不会暴露在恶劣的加工环境中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ananth Dodabalapur其他文献

Photoluminescence characterization of the effects of rapid thermal annealing on AlGaAs/GaAs modulation-doped quantum wells
  • DOI:
    10.1007/bf02662821
  • 发表时间:
    1990-12-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Ananth Dodabalapur;B. G. Streetman
  • 通讯作者:
    B. G. Streetman
Negatively successful
负面的成功
  • DOI:
    10.1038/434151a
  • 发表时间:
    2005-03-09
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Ananth Dodabalapur
  • 通讯作者:
    Ananth Dodabalapur
Photoluminescence and electroreflectance studies of modulation-doped pseudomorphic AlGaAs/InGaAs/GaAs quantum wells
  • DOI:
    10.1007/bf02733817
  • 发表时间:
    1990-03-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Ananth Dodabalapur;V. P. Kesan;D. P. Neikirk;B. G. Streetman;M. H. Herman;I. D. Ward
  • 通讯作者:
    I. D. Ward
Rapid thermal annealing of dual Si and P implants in InP
  • DOI:
    10.1007/bf02655346
  • 发表时间:
    1989-01-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Ananth Dodabalapur;B. G. Streetman
  • 通讯作者:
    B. G. Streetman
Effects of contact resistance on the evaluation of charge carrier mobilities and transport parameters in amorphous zinc tin oxide thin-film transistors

Ananth Dodabalapur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ananth Dodabalapur', 18)}}的其他基金

I-Corps: Fourth Wall Optics
I军团:第四墙光学
  • 批准号:
    2019568
  • 财政年份:
    2020
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
EAGER: Nanomodular Systems for Efficient Light Emission from a Heterogeneous Integration of Polymers, Two-Dimensional Semiconductors and Insulators
EAGER:通过聚合物、二维半导体和绝缘体的异质集成实现高效发光的纳米模块化系统
  • 批准号:
    1938179
  • 财政年份:
    2019
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Improving the design and performance of polymer thin-film transistors for circuit applications.
改进电路应用聚合物薄膜晶体管的设计和性能。
  • 批准号:
    1407932
  • 财政年份:
    2014
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Technological Challenges for Hybrid Flexible Electronics and Photonics Workshop to be held in April 2010 at Arlington, VA
混合柔性电子和光子学研讨会的技术挑战将于 2010 年 4 月在弗吉尼亚州阿灵顿举行
  • 批准号:
    0965495
  • 财政年份:
    2010
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Device Physics of Organic Transistor Chemical Vapor Sensors
有机晶体管化学蒸气传感器的器件物理
  • 批准号:
    1028184
  • 财政年份:
    2010
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Evaluation of Carrier Velocity in Organic Single Crystal and Polycrystalline Thin-Film Transistors and Development of a Velocity-Field Model
有机单晶和多晶薄膜晶体管中载流子速度的评估以及速度场模型的开发
  • 批准号:
    0901683
  • 财政年份:
    2009
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Dynamic Response of Polymer Transistors and their Application in Fast Circuits
聚合物晶体管的动态响应及其在快速电路中的应用
  • 批准号:
    0621892
  • 财政年份:
    2006
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
WORKSHOP: Technological Challenges for Flexible, Light-weight, Low-cost and Scalable Organic Electronics and Photonics being held in Arlington, VA
研讨会:灵活、轻质、低成本和可扩展有机电子和光子学的技术挑战在弗吉尼亚州阿灵顿举行
  • 批准号:
    0309192
  • 财政年份:
    2003
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant

相似海外基金

Nanoscale photophysics at defects and interfaces in organic semiconductors
有机半导体缺陷和界面的纳米光物理
  • 批准号:
    EP/V044907/1
  • 财政年份:
    2022
  • 资助金额:
    $ 160万
  • 项目类别:
    Research Grant
Near-field interactions with organic materials: probing mobility on the nanoscale
与有机材料的近场相互作用:探测纳米尺度的迁移率
  • 批准号:
    548012-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 160万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Manufacturing Organic-Inorganic Nanoparticle Composites with Nanoscale Precision via Directed Self-Assembly
通过定向自组装制造纳米级精度的有机-无机纳米粒子复合材料
  • 批准号:
    EP/V055127/1
  • 财政年份:
    2022
  • 资助金额:
    $ 160万
  • 项目类别:
    Research Grant
Nanoscale Metal-Organic Frameworks as X-ray Activatable Cancer Vaccines
纳米级金属有机框架作为 X 射线激活癌症疫苗
  • 批准号:
    10558960
  • 财政年份:
    2022
  • 资助金额:
    $ 160万
  • 项目类别:
Near-field interactions with organic materials: probing mobility on the nanoscale
与有机材料的近场相互作用:探测纳米尺度的迁移率
  • 批准号:
    548012-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 160万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
New Redox-Active Organic pi-Conjugated Building Blocks for Functional Nanoscale Materials and Devices
用于功能纳米材料和器件的新型氧化还原活性有机π共轭结构单元
  • 批准号:
    RGPIN-2016-04707
  • 财政年份:
    2021
  • 资助金额:
    $ 160万
  • 项目类别:
    Discovery Grants Program - Individual
Near-field interactions with organic materials: probing mobility on the nanoscale
与有机材料的近场相互作用:探测纳米尺度的迁移率
  • 批准号:
    548012-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 160万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nanoscale Visualization and Understanding of Atmospheric Aerosol Dissolution Kinetics in Aqueous Organic Droplets
水有机液滴中大气气溶胶溶解动力学的纳米级可视化和理解
  • 批准号:
    2003927
  • 财政年份:
    2020
  • 资助金额:
    $ 160万
  • 项目类别:
    Standard Grant
Nanoscale Metal-Organic Frameworks Enable Radiotherapy-Radiodynamic Therapy and Deliver CpG Oligodeoxynucleotides to Generate Tumor Vaccines and Potentiate Immunotherapy of Head and Neck Cancers
纳米级金属有机框架实现放射治疗-放射动力学治疗并提供 CpG 寡脱氧核苷酸以生成肿瘤疫苗并增强头颈癌的免疫治疗
  • 批准号:
    10450090
  • 财政年份:
    2020
  • 资助金额:
    $ 160万
  • 项目类别:
Nanoscale Metal-Organic Frameworks Enable Radiotherapy-Radiodynamic Therapy and Deliver CpG Oligodeoxynucleotides to Generate Tumor Vaccines and Potentiate Immunotherapy of Head and Neck Cancers
纳米级金属有机框架实现放射治疗-放射动力学治疗并提供 CpG 寡脱氧核苷酸以生成肿瘤疫苗并增强头颈癌的免疫治疗
  • 批准号:
    10684142
  • 财政年份:
    2020
  • 资助金额:
    $ 160万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了